Warianty tytułu
Języki publikacji
Abstrakty
The effects of tensile stress and temperature on cell wall elasticity have been investigated in the outer cell walls of coleoptile epidermis of 4- and 6-day-old Zea mays L. seedlings. The change in tensile stress from 6 to 40 MPa caused the increase in cell wall elastic modulus from 0.4 to 3 GPa. Lowering the temperature from 30 to 4 ºC resulted in instantaneous and reversible cell wall elongation of 0.3–0.5 %. At a given temperature and stress level, the wall elastic modulus of 6-day-old seedlings tended to be 30 % higher than that of 4-day-old plants. The relationship between cell wall elasticity and mechanical stress indicated that the stress distribution within the cell wall is highly uneven. The analysis of the effect of temperature on cell wall elastic strain showed that structural differences between crystalline and amorphous load-bearing polymers were not the only cause of the uneven stress distribution. Based on the results obtained by Hejnowicz and Borowska- Wykręt (Planta 220:465–473, 2005), we suggested that the uneven stress distribution is partially related to the stress gradient between inner and outer layers of the cell wall.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.2183-2191,fig.,ref.
Twórcy
autor
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em. 7-9, 199034 Saint-Petersburg, Russia
autor
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em. 7-9, 199034 Saint-Petersburg, Russia
autor
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em. 7-9, 199034 Saint-Petersburg, Russia
Bibliografia
- Chaplain MAJ (1993) The strain energy function of an ideal plant cell wall. J Theor Biol 163:77–97. doi:10.1006/jtbi.1993.1108
- Dintwa E, Jancsóka P, Mebatsion HK (2011) A finite element model for mechanical deformation of single tomato suspension cells. J Food Eng 103:265–272. doi:10.1016/j.jfoodeng.2010.10.023
- Dumais J, Forterre Y (2012) Vegetable dynamics: the role of water in plant movements. Annu Rev Fluid Mech 44:453–478. doi: 10.1146/annurev-fluid-120710-101200
- Franks PJ, Buckley TN, Shope JC, Mott KA (2001) Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. Plant Physiol 125:1577–1584
- Gardner WR, Ehlig CF (1965) Physical aspects of the internal water relations of plant leaves. Plant Physiol 40:705–710
- Hejnowicz Z (1997) Graviresponses in herbs and trees: a major role for the redistribution of tissue and growth stresses. Planta 203:S136–S146. doi:10.1007/PL00008102
- Hejnowicz Z (2011) Plants as mechano-osmotic transducers. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Signal Commun Plants 9:241–267. doi:10.1007/978-3-642-19091-9_10
- Hejnowicz Z, Borowska-Wykre˛t D (2005) Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission. Planta 220:465–473. doi:10.1007/s00425-004-1353-z
- Hejnowicz Z, Sievers A (1996) Tissue stresses in organs of herbaceous plants. III. Elastic properties of the tissues of sunflower hypocotyl and origin of tissue stresses. J Exp Bot 47:519–528
- Hejnowicz Z, Rusin A, Rusin T (2000) Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J Plant Growth Regul 19:31–44
- Hohl M, Schopfer P (1992) Cell-wall tension of the inner tissues of the maize coleoptile and its potential contribution to auxinmediated organ growth. Planta 188:340–344. doi:10.1007/BF00192800
- Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099. doi: 10.1126/science.1213100
- Kutschera U (1992) The role of the epidermis in the control of elongation growth in stems and coleoptiles. Bot Acta 105:246–252
- Kutschera U (2004) The biophysical basis of cell elongation and organ maturation in coleoptiles of rye seedlings: implications for shoot development. Plant Biol 6:158–164. doi:10.1055/s-2004-815734
- Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409. doi:10.1016/j.jplph.2007.08.002
- Lepeschkin VV (1907) Studies on the osmotic properties and turgor of plant cells (in Russian). Notes Imp Acad Sci Ser 8 22(2): 56–61
- Niklas KJ, Paolillo DJ (1997) The role of the epidermis as a stiffening agent in Tulipa (Liliaceae) stems. Am J Bot 84:735
- Nilsson SB, Hertz CH, Falk S (1958) On the relation between turgor pressure and tissue rigidity. II. Physiol Plantarum 11:818–837.doi:10.1111/j.1399-3054.1958.tb08275.x
- Peaucelle A, Braybrook SA, Guillou LL et al (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726. doi:10.1016/j.cub.2011.08.057
- Peters WS, Tomos AD (1996) The history of tissue tension. Ann Bot 77:657–665. doi:10.1093/aob/77.6.657
- Pitt RE, Davis DC (1984) Finite element analysis of fluid-filled cell response to external loading. Trans Am Soc Agric Eng 27: 1976–1983
- Potocka I, Szymanowska-Pułka J, Karczewski J, Nakielski J (2011) Effect of mechanical stress on Zea root apex. I. Mechanical stress leads to the switch from closed to open meristem organization. J Exp Bot 62:4583–4593. doi:10.1093/jxb/err169
- Pritchard J, Wyn Jones RG, Tomos AD (1988) Control of wheat root growth. The effects of excision on growth, wall rheology and root anatomy. Planta 176:399–405. doi:10.1007/BF00395421
- Steudle E, Jeschke WD (1983) Water transport in barley roots. Planta 158:237–248. doi:10.1007/BF01075260
- Steudle E, Zimmermann U, Lüttge U (1977) Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol 59:285–289
- Tomos AD, Steudle E, Zimmermann U, Schulze E-D (1981) Water relations of leaf epidermal cells of Tradescantia virginiana. Plant Physiol 68:1135–1143
- Tyerman SD, Oats P, Gibbs J, Dracup M, Greenway H (1989) Turgorvolume regulation and cellular water relations of Nicotiana tabacum roots grown in high salinities. Austr J Plant Physiol 16:517–531
- Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykre˛t D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451. doi:10.1016/j.cell.2012.02.048
- Wada M (2002) Lateral thermal expansion of cellulose Ib and IIII polymorphs. J Polym Sci B Polym Phys 40:1095–1102. doi: 10.1002/polb.10166
- Wang CX, Wang L, Thomas CR (2004) Modelling the mechanical properties of single suspension-cultured tomato cells. Ann Bot 93:443–453. doi:10.1093/aob/mch062
- Wu H-I, Sharpe PJH (1979) Stomatal mechanics II: material properties of guard cell walls. Plant Cell Environ 2:235–244. doi:10.1111/j.1365-3040.1979.tb00075.x
- Wu H-I, Spence RD, Sharpe PJH, Goeschl JD (1985) Cell wall elasticity: I. a critique of the bulk elastic modulus approach and an analysis using polymer elastic principles. Plant Cell Environ 8:563–570. doi:10.1111/j.1365-3040.1985.tb01694.x
- Wu H-I, Spence RD, Sharpe PJH (1988) Plant cell wall elasticity II: polymer elastic properties of the microfibrils. J Theor Biol 133:239–253. doi:10.1016/S0022-5193(88)80008-0
- Zhang X-Q, Wei PC, Xiong YM, Yang Y, Chen J, Wang XC (2011) Overexpression of the Arabidopsis alpha-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Rep 30:27–36. doi:10.1007/s00299-010-0937-2
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3e11fdff-dbef-4f34-98a8-c04a7d24aa1d