Warianty tytułu
Języki publikacji
Abstrakty
Thanks to their unique physical, chemical, and biological properties, raised bogs are considered archives of past hydrological and vegetation changes, which in the case of ombrotrophic bogs may reflect alterations of paleoclimate. Detailed studies on the past transformations of bogs provide researchers with necessary knowledge to anticipate future changes of these ecosystems. The aim of this research was to find a good and easily obtainable paleoenvironmental proxy that can be used in preliminary studies with no need for advanced equipment and extra costs. For our studies three raised bogs were chosen, whose genesis and history have been comprehensively described by other authors according to micro- and macrofossil data. We performed chemical analyses on the samples from the cores taken from the described bogs. Obtained results were compared with accessible data on the bogs’ development and underwent statistical analysis. In general, geochemical features of peat presented in this article corresponded well with the accessible micro- and marcofossil data, and content of non-hydrolysable lipids in peat turned out to be the best indicator of water level on the studied bogs.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.1185-1193,fig.,ref.
Twórcy
autor
- Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
autor
- Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
Bibliografia
- 1. BLACKFORD J., PAYNE R.J. Peat humification and climate change: a multi-site comparison from mires in south-east Alaska. Mires and Peat 3, 2008 [www.mires-and-peat.net].
- 2. LAVOIE M., PELLERIN S., LAROCQUE M. Examining the role of allogenous and autogenous factors in the longterm dynamics of a temperate headwater peat land (southern Québec, Canada). Palaeogeogr. Palaeocl. 386, 336, 2013.
- 3. LÓPEZ-DÍAS V., URBANCZYK J., BLANCO C.G., BORREGO A.G. Biomarkers as paleoclimate proxies in peat lands in coastal high plains in Asturias, N Spain. Int. J. Coal. Geol. 116-117, 270, 2013.
- 4. TOBOLSKI K. Guide to identification of peats and lake sediments. PWN, Warszawa, 2000.
- 5. TOBOLSKI K. Geological criteria in research on reservoirs of biological accumulation. Regionalny Monitoring Środowiska Przyrodniczego 5, 119, 2004.
- 6. TOBOLSKI K. Paleolimnology in the context of the biotic zone. Studia Limnologica et Telmatologica, pp 43-50, 2007.
- 7. ZACCONE C., CASIELLO G., LONGOBARDI F., BRAGAZZA L., SACCO A., MIANO T.M. Evaluating the ‘conservative’ behavior of sTable isotopic ratios (δ¹³C, δ¹⁵N, and δ¹⁸O) in humic acids and their reliability as paleoenvironmental proxies along a peat sequence. Chem. Geol. 285, 124, 2011.
- 8. CHAMBERS F.M., BOOTH R.K., DE VLEESCHOUWER F., LAMENTOWICZ M., LE ROUX G., MAUQUOY D., NICHOLS J.E., VAN GEEL B. Development and refinement of proxy-climate indicators from peat. Quatern. Int. 268, 21, 2012.
- 9. KLAVINS M., SIRE J., PURMALIS O., MELECIS V. Approaches to estimating humification indicators for peat. Mires and Peat 3, 2008 [www.mires-and-peat.net]
- 10. WANG R.L., BRASSELL S.C., SCARPITTA S.C., ZHENG M.P., ZHANG S.C., HAYDE P.R., MUENCH, L.M. Steroids in sediments from Zabuye Salt Lake, western Tibet: Diagenetic, ecological or climatic signals? Org. Geochem. 35, 157, 2004.
- 11. YELOFF D., MAUQUOY D. The influence of vegetation composition on peat humification: implications for paleoclimatic studies. Boreas 35, 662, 2006.
- 12. ANDERSSON R.A., MEYERS P.A. Effect of climate change on delivery and degradation of lipid biomarkers in a Holocene peat sequence in the Eastern European Russian Arctic. Org. Geochem. 53, 63, 2012.
- 13. HUANG X., XUE J., WANG X., MEYERS P.A., HUANG J., XIE S. Paleoclimate influence on early diagenesis of plant triterpenes in the Dajiuhu peat land, central China. Geochim. Cosmochim. Ac. 123, 106, 2013.
- 14. LI H.-C., LIEW P.-M., SEKI O., KUO T.-S., KAWAMURA K., LIANG-CHI WANG L.-C., LEE T.-Q. Paleoclimate variability in central Taiwan during the past 30 Kyrs reflected by pollen, d¹³C TOC, and n-alkane-dD records in a peat sequence from Toushe Basin. J. Asian Earth Sci. 69, 166, 2013.
- 15. MARGALEF O., CAÑELLAS-BOLTÀ N., PLA-RABES S., GIRALT S., PUEYO J.J., JOOSTEN H., RULL V., BUCHACA T., HERNÁNDEZ A., VALERO-GARCÉS B.L., MORENO A., SÁEZ A. A 70,000 year multiproxy record of climatic and environmental change from Rano Aroi peat land (Easter Island). Global Planet. Change 108, 72, 2013.
- 16. MCKIRDY D.M., THROPE C.S., HAYNES D.E., GRICE K., KRULL E.S., HALVERSON G.P., WEBSTER L.J. The biogeochemical evolution of the Coorong during the mid- to late Holocene: An elemental, isotopic and biomarker perspective. Org. Geochem. 41, 96, 2010.
- 17. PANCOST D.R., MCCLYMONT E.L., BINGHAM E.M., ROBERTS Z., CHARMAN D.J., HORNIBROOK E.R.C., BLUNDELL A., CHAMBERS F.M., LIM K.L.H., EVERSHED R.P. Archeol as methanogen biomarker in ombrotrophic bods. Organic Chemistry 42, 1279, 2011.
- 18. PU Y., NACE T., MEYERS P.A., ZHANG H., WANG Y., ZHANG C.L., SHAO X. Paleoclimate changes of the last 1000 yrs on the eastern Qinghai–Tibetan Plateaurecorded by elemental, isotopic, and molecular organic matter proxies in sediment from glacial Lake Ximencuo. Palaeogeogr. Palaeocl. 379-380, 39, 2013.
- 19. ZHENG Y., ZHOU W., MEYERS P.A. Proxy value of nalkan-2-ones in the Hongyuan peat sequence to reconstruct Holocene climate changes on the eastern margin of the Tibetan Plateau. Chem. Geol. 288, 97, 2011.
- 20. WANG H., HONG Y., LIN Q., HONG B., ZHU Y., WANG Y., XU H. Response of humification degree to monsoon climate during the Holocene from the Hongyuan peat bog, eastern Tibetan Plateau. Palaeogeogr. Palaeocl. 286, 171, 2010.
- 21. JOOSTEN H., CLARKE D. Wise Use of Mires and Peat lands. International Mire Conservation Group and International Peat Society. 2002.
- 22. TOMASZEWSKA K. Development history of the chosen raised bogs in the Izerskie Mountains, including anthropogenic vegetation changes. Wydawnictwo Akademii Rolniczej, Wrocław, 2004.
- 23. POTOCKA J. Preservation degree, geomorphological and hydrological conditions of location of raised bogs in the Izerskie Mountains. Przyroda Sudetów Zachodnich 3, 35, 2000.
- 24. OSTROWSKA A., GAWLIŃSKI S., SZCZUBIAŁKA Z. Methods of analysis and assessment of soil and plant biomass properties. Instytut Ochrony Środowiska, Warszawa, 1991.
- 25. OKRUSZKO H. Principles of organic soils division. Wiadomości Instytutu Melioracji i Użytków Zielonych 12, 19, 1974.
- 26. KONONOWA M.M. Soil organic matter, its structure, properties and methods of analysis. PWRiL, Warszawa, 1968.
- 27. SAPEK A., SAPEK B. Methods of chemical analysis of organic soils. Materiały instruktażowe Instytutu Melioracji i Użytków Zielonych. Wydawnictwo IMUZ, Falenty, 1997.
- 28. BRAAK TER C.J.F., SMILAUER P. CANOCO Reference Manual and User's Guide to CANOCO for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, New York, USA, 1998.
- 29. KASPRZAK M. Geomorphological and ecological effects of flooding. In: Extraordinary natural events in the Lower Silesia region and their effects (P. Migoń, Ed.), UWr, Wrocław, pp. 161-174, 2010.
- 30. BUNBURY J., FINKELSTEIN S.A., BOLLMANN J. Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Kanada. Quaternary Res. 78, 275, 2012.
- 31. DORREPAAL E., AERTS R., CORNELISSEN J.H.C., CALLAGHAN T.V., VAN LOGTESTIJN R.S.P. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a subarctic bog. Glob. Change Biol. 10, 93, 2004.
- 32. KLEIN E.S., BOOTH R.K., YU Z., MARK B.G., STANSELL N.D. Hydrology-mediated differential response of carbon accumulation to late Holocene climate change at two peat lands in Southcentral Alaska. Quaternary Sci. Rev. 64, 61, 2013.
- 33. NOVAK M., BRIZOVA E., ADAMOVA M., ERBANOVA L., BOTTRELL S.H. Accumulation of organic carbon over the past 150 years in five freshwater peat lands in western and central Europe. Sci. Total Environ. 390, 425, 2008.
- 34. BAAS M., PANCOST R., VAN GEEL B., SINNINGHE DAMSTE J.S. A comparative study of lipids in Sphagnum species. Org. Geochem. 31, 535, 2000.
- 35. GLIME J.M. Bryophyte ecology. Published on-line at http://www.bryoecol.mtu.edu, 2006.
- 36. TAHVANAINEN T., HARAGUCHI A. Effect of pH on phenol oxidase activity on decaying Sphagnum mosses. Eur. J. Soil Biol. 54, 41, 2013.
- 37. AERTS R., VERHOEVEN J. T. A., WHIGHAM D. F. Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80, 2170, 1999.
- 38. TURETSKY M. R. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106, 395, 2003.
- 39. LOISEL J., GARNEAU M. Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multiproxy archives. Palaeogeogr. Palaeocl. 291, 493, 2010.
- 40. ZACCONE C., SANEI H., OUTRIDGE P.M., MIANO T.M. Studying the humification degree and evolution of peat down a Holocene bog profile (Inuvik, NW Canada): A petrological and chemical perspective. Org. Geochem. 42, 399, 2011.
- 41. KLAVINS M., PURMALIS O. Properties and structure of raised bog peat humic acids. J. Mol. Struct. 1050, 103, 2013.
- 42. CASELDINE C.J., BAKER A., CHARMAN D.J., HENDON D. A comparative study of optical properties of NaOH peat extracts: implications for humification studies. The Holocene 10, 649, 2000.
- 43. STEVENSON F.J. Humus Chemistry: Genesis, Composition, Reactions. John Wiley, New York, 1982.
- 44. DISNAR J.R., STEFANOVA M., BOURDON S., LAGGOUN-DEFARGE F. Sequential fatty acid analysis of a peat core covering the last two millennia: Diagenesis appraisal and consequences for paleoenvironmental reconstruction. Org Geochem 36, 1391, 2005.
- 45. MADZIARZ M. Historical ore mining sites in Lower Silesia (Poland) as geo-tourism attraction. Acta Geoturistica 4, 15, 2013.
- 46. SMIEJA-KRÓL B., FIAŁKIEWICZ-KOZIEŁ B., SIKORSKI J., PALOWSKI B. Heavy metal behaviour in peat – A mineralogical perspective. Sci. Total Environ. 408, 5924, 2010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3c73ae0f-2419-44d8-a3c8-a60734b03034