Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 01 |
Tytuł artykułu

Salt tolerance in two tall wheatgrass species is associated with selective capacity for Kplus over Naplus

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Decaploid Elytrigia elongata (tall wheatgrass) is a halophytic relative of wheat that is used to improve salt tolerance of wheat in China. However, the physiological mechanisms for the salt tolerance of decaploid E. elongata remain elusive. To further gain insights into mechanisms important for salt tolerance, we present here a comparative study of salt tolerance in salt-sensitive tetraploid E. elongata (PI578686) and salt-tolerant decaploid E. elongata (PI276399). Results showed that compared with PI578686, PI276399 exhibited a higher relative growth rate and a stronger selective absorption and -transport capacity for K⁺ over Na⁺ under high salt conditions (100–200 mM NaCl). This contributed to maintain lower net Na⁺ uptake rates and more efficiently control Na⁺ transport to the shoot in PI276399 than in PI578686. Meanwhile, this also resulted in lower reductions of tissue K⁺ concentrations as well as of net K⁺ uptake rates in PI276399 compared to PI578686. Taken together, our findings indicate that PI276399 has the stronger selectivity for K⁺ over Na⁺ contributing it to maintain lower Na⁺ uptake and K⁺ loss compared with PI578686 in the presence of high salt, and hence endowing the higher salt tolerance of PI276399.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
37
Numer
01
Opis fizyczny
Article: 1708 [9 p.], fig.,ref.
Twórcy
autor
  • Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
autor
  • Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
autor
  • Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
autor
Bibliografia
  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2009) Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci 176:768–774
  • Apse MP, Blumwald E (2007) Na⁺ transport in plants. FEBS Lett 581:2247–2254
  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151
  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257
  • Colmer TD, Epstein E, Dvořák J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salttolerant wheat 9 Lophopyrum elongatum (Host) A. Love amphiploid. Plant Physiol 108:1715–1724
  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078
  • Deal KR, Goyal S, Dvořák J (1999) Arm location of Lophopyrum elongatum genes affecting K⁺/Na⁺ selectivity under salt stress. Euphytica 108:193–198
  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytol 175:387–405
  • Demidchik V, Tester MA (2002) Sodium fluxes through nonselective cation channels in the plant plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387
  • Dewey DR (1960) Salt tolerance of 25 strains of Agropyron. Agron J 52:631–635
  • Essah PA, Davenport RJ, Tester M (2003) Sodium influx and accumulation in A. thaliana. Plant Physiol 133:307–318
  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963
  • Gharsa MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savouré A, Abdelly C (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K⁺/Na⁺ selectivity and proline accumulation. J Plant Physiol 165:588–599
  • Gorham J, Jones RG, Bristol A (1990) Partial characterization of the trait for enhanced K⁺-Na⁺ discrimination in the D genome of wheat. Planta 180:590–597
  • Greenway H, Rogers A (1963) Growth and ion uptake of Agropyron elongatum on saline substrates, as compared with a salt-tolerant variety of Hordeum vulgare. Plant Soil 18:21–30
  • Gulick PJ, Dvořák J (1992) Coordinate gene response to salt stress in Lophopyrum elongatum. Plant Physiol 100:1384–1388
  • Guo Q, Wang P, Ma Q, Zhang JL, Bao AK, Wang SM (2012) Selective transport capacity for K⁺ over Na⁺ is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora. Func Plant Biol 39:1047–1057
  • Guo Q, Meng L, Mao PC, Tian XX (2013a) Role of silicon in alleviating salt-induced toxicity in white clover. Bull Environ Contam Toxicol 91:213–216
  • Guo Q, Meng L, Mao PC, Tian XX (2013b) Role of silicon in alleviating salt-induced toxicity in white clover. Bull Environ Contam Toxicol 91:213–216
  • Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193
  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na⁺ exclusion Nax1 and Nax2 (wheat HKT1;4 and HKT1;5) decrease Na⁺ accumulation in bread wheat under saline and waterlogged conditions. J Exp Bot 62:2939–2947
  • Maathuis FJM, Amtmann A (1999) K⁺ nutrition and Na⁺ toxicity: the basis of cellular K⁺/Na⁺ ratios. Ann Bot 84:123–133
  • Mao PS, Huang Y, Wang XG, Meng L, Mao PC, Zhang GF (2010) Cytological evaluation and karyotype analysis in plant germplasms of Elytrigia Desv. Agri Sci China 91:1553–1560
  • Martínez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 419:2421–2431
  • McGuire GE, Dvořák J (1981) High salt tolerance potential in wheat grasses. Crop Sci 21:702–705
  • Meng L, Shang CY, Mao PC, Zhang GF, An SZ (2009) A comprehensive evaluation of salt tolerance for germplasm and materials of Elytrigia at the seeding stage. Acta Pratac Sin 18:67–74 (in Chinese)
  • Mullan DJ, Colmer TD, Francki MG (2007) Arabidopsis–rice–wheat gene orthologues for Na⁺ transport and transcript analysis in wheat–L. elongatum aneuploids under salt stress. Mol Genet Genomics 277:199–212
  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663
  • Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Annu Rev Plant Biol 59:651–681
  • Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC (2004) Alkali grass resists salt stress through high [K⁺] and an endodermis barrier to Na⁺. J Exp Bot 55:939–949
  • Shabala L, Cuin TA, Newman IA, Shabala S (2005) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222:1041–1050
  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2⁺ ameliorates NaCl-induced K⁺ loss from Arabidopsis root and leaf cells by controlling plasmamembrane K⁺-permeable channels. Plant Physiol 141:1653–1665
  • Shan L, LI CL, Chen F, Zhao SY, Xia GM (2008) Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ 31:1128–1137
  • Shannon MG (1978) Testing salt tolerance variability among tall wheatgrass lines. Agri J 20:719–722
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527
  • Wang SM, Zhao GQ, Gao YS, Tang ZC, Zhang CL (2005) Puccinellia tenuiflora exhibits stronger selectivity for K⁺ over Na⁺ than wheat. J Plant Nutr 27:1841–1857
  • Wang SM, Zhang JL, Flowers TJ (2007) Low affinity Na⁺ uptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571
  • Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Puccinellia tenuiflora maintains a low Na⁺ level under salinity by limiting unidirectional Na⁺ influx resulting in a high selectivity for K⁺ over Na⁺. Plant Cell Environ 32:486–496
  • Weimberg R, Shannon MC (1988) Vigor and salt tolerance in 3 lines of tall wheatgrass. Physiol Plant 73:232–237
  • Wu GQ, Liang N, Feng RJ, Zhang JJ (2013) Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. Acta Physiol Plant 35:2665–2674
  • Xia G, Xiang F, Zhou A, Wang H, Chen H (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet 107: 305–399
  • Yeo AR, Flowers TJ (1983) Varietal differences in the toxicity of sodium ions in rice leaves. Physiol Plant 59:189–195
  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3a46b329-b37d-4b06-8927-27fa16110698
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.