Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 |
Tytuł artykułu

The misuse of relative humidity in ecological studies of hibernating bats

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Field biologists almost invariably report relative humidity as a measure of moisture in the air and assume that relative humidity somehow predicts evaporative water loss from an animal. In this paper, I use the vapor pressure gradient to show that, under conditions of constant relative humidity, evaporative water loss from the body surface of a hibernating bat can vary by more than 100%, depending on ambient temperature. Potential evaporative water loss at constant relative humidity is an increasing curvilinear function of ambient temperature for a torpid bat that has a surface temperature equal to surrounding air temperature, but a decreasing curvilinear function of air temperature for an aroused bat in the hibernaculum. Under some circumstances, evaporative loss actually can be greater in a hibernaculum with higher relative humidity than in one with lower relative humidity. When examining potential differences in evaporative water loss between sites, habitats, or treatments, biologists should consider the absolute (not relative) level of ambient moisture, as well as the surface temperature of the animal, which greatly affects the tendency of water molecules to evaporate.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
16
Numer
1
Opis fizyczny
p.249-254,fig.,ref.
Twórcy
autor
  • Department of Biological, Eastern Michigan University, Ypsilanti, MI 48197, USA
Bibliografia
  • 1. E. Aguado , and J. E. Burt . 2001. Understanding weather and climate, 2nd edition. Prentice Hall, Upper Saddle River, New Jersey, 505 pp. Google Scholar
  • 2. C. D. Ahrens 2003. Meteorology. An introduction to weather, climate, and the environment. Brooks Cole, Pacific Grove, California, 544 pp. Google Scholar
  • 3. O. A. Alduchov , and R. E. Eskridge . 1996. Improved Magnus form approximation of saturation vapor pressure. Journal of Applied Meteorology, 35: 61–69. Google Scholar
  • 4. F. Amorim , H. Rebello , and L. Rodrigues . 2012. Factors influencing bat activity and mortality at a wind farm in the Mediterranean region. Acta Chiropterologica, 14: 439–457. Google Scholar
  • 5. J. B. Bassett , B. Pinshow , and C. Korine . 2009. Methods for investigating water balance in bats. Pp. 659–673, in Ecological and behavioral methods for the study of bats, 2nd edition ( T. H. Kunz and S. Parsons , eds.). Johns Hopkins University Press, Baltimore, Maryland, 901 pp. Google Scholar
  • 6. J. S. Boratyński , M. Rusiński , T. Kokurewicz , A. Bereszyński , and M. S. Wojciechowski . 2012. Clustering behavior in wintering greater mouse-eared bats Myotis myotis — the effect of micro-environmental conditions. Acta Chiropterologica, 14: 417–424. Google Scholar
  • 7. A. L. Buck 1981. New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20: 1527–1532. Google Scholar
  • 8. G. S. Campbell , and J. M. Norman . 1998. An introduction to environmental biophysics, 2nd edition. Springer-Verlag, New York, New York, 286 pp. Google Scholar
  • 9. R. L. Clawson , R. K. LaVal , M. L. Laval , and W. Caire . 1980. Clustering behavior of hibernating Myotis sodalis in Missouri. Journal of Mammalogy, 61: 245–253. Google Scholar
  • 10. P. M. Cryan , C. U. Meteyer , J. G. Boyles , and D. S. Blehert . 2010. Wing pathology associated with white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biology, 8: 135. Google Scholar
  • 11. L. Grieneisen 2011. Hibernacula microclimate and white-nose syndrome susceptibility in the little brown myotis (Myotis lucifugus). M.Sci. Thesis, Bucknell University, Lewisburg, Pennsylvania, 100 pp. Google Scholar
  • 12. R. W. Hill 1976. Comparative physiology of animals — an environmental approach. Harper & Row, New York, New York, 656 pp. Google Scholar
  • 13. T. Hill , and T. Hall . 2013. Vapor pressure. Available at http://www.srh.noaa.gov/epz/?n=wxcalc_vaporpressure/ (accessed 19 April 2014). Google Scholar
  • 14. R. W. Hill , G. A. Wyse , and M. Anderson . 2008. Animal physiology, 2nd edition. Sinauer Associates, Sunderland, Massachusetts, 762 pp. Google Scholar
  • 15. F. G. Howarth 1980. The zoogeography of specialized cave animals: a bioclimatic model. Evolution, 34: 394–406. Google Scholar
  • 16. L. B. Kirschner 1991. Water and ions. Pp. 13–107, in Environmental and metabolic animal physiology, 4th edition ( C. L. Prosser , ed.). Wiley-Liss, New York, New York, 592 pp. Google Scholar
  • 17. K. E. Langwig , W. F. Frick , J. T. Bried , A. C. Hicks , T. H. Kunz , and A. M. Kilpatrick . 2012. Sociality, densitydependence, and microclimates determine the persistence of populations suffering from the novel fungal disease, whitenose syndrome. Ecology Letters, 15: 1050–1057. Google Scholar
  • 18. J. Leighly 1937. A note on evaporation. Ecology, 18: 180–198. Google Scholar
  • 19. R. J. List 1971. Smithsonian meteorological tables, 6th edition. Smithsonian Institution, Miscellaneous Collections, 114: 1–527. Google Scholar
  • 20. F. K. Lutgens , and E. J. Tarbuck . 2007. The atmosphere. Prentice Hall, Upper Saddle River, New Jersey, 520 pp. Google Scholar
  • 21. G. Maltagliati , P. Agnellui , and S. Cannicci . 2013. Where and what time? Multiple roost use and emergence time in greater horseshoe bats (Rhinolophus ferrumequinum). Acta Chiropterologica, 15: 113–120. Google Scholar
  • 22. D. M. Reeder, C. L. Frank, G. G. Turner, A. Kurta, E. R. Britzke, S. R. Darling, C. W. Stihler, A. C. Hicks, C. U. Meteyer, R. Jacob, et al. 2012. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE, 7: e38920. Google Scholar
  • 23. S. Tabata 1973. A simple but accurate formula for the saturation vapor pressure over liquid water. Journal of Applied Meteorology, 12: 1410–1411. Google Scholar
  • 24. A. J. Thomas , and D. S. Jacobs . 2013. Factors influencing the emergence times of sympatric insectivorous bat species. Acta Chiropterologica, 15: 121–132. Google Scholar
  • 25. D. W. Thomas , and F. Geiser . 1997. Periodic arousals in hibernating animals: is evaporative water loss involved? Functional Ecology, 11: 585–591. Google Scholar
  • 26. C. W. Thornwaite 1940. Atmospheric moisture in relation to ecological problems. Ecology, 21: 17–28. Google Scholar
  • 27. L. Warnecke , J. M. Turner , T. K. Bollinger , V. Misra , P. M. Cryan , D. S. Blehert , G. Wibbelt , and C. K. Willis . 2013. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biology Letters, 9: 20130177. Google Scholar
  • 28. C. K. R. Willis , A. K. Menzies , J. G. Boyles , and M. S. Wojciechowski . 2011. Cutaneous water loss is a plausible explanation for mortality of bats from white-nose syndrome. Integrative and Comparative Biology, 53: 364–373. Google Scholar
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-33de1d9c-11ea-4839-9e85-9b0e9978ac21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.