Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The entry of gentamicin antibiotics into the aquatic environment has raised many concerns. Today, modern nanotechnology-based approaches have been employed to overcome such problems. The present study was conducted to investigate the efficiency of the UV/ZnO photocatalytic process in removing antibiotic gentamicin from aqueous solution. So we investigated the effects of parameters, including initial gentamicin concentrations (20, 60, and 100 mg/L), zinc oxide concentrations (0, 200, 350, and 500 mg/L), contact times (10, 30, 60, and 120 min), pH (5, 6, and 7), and type of radiation (sun and UV-C). The sample size and the number of test procedures were determined to be 576, taking into account the levels of effective variables and through the full factorial. All experiments were carried out in a double-compartment reactor at laboratory temperature using a magnetic stirrer at 150 rpm. The change of gentamicin concentrations were measured using a DR5000 spectrophotometer. Data analysis and charting were done through Design Expert 8 and Excel 2010 software. Results showed that the maximum removal efficiency of gentamicin of about 93% was obtained under UV-C irradiation at pH of 5, contact time of 30 min, ZnO concentration of 200 mg/L, and initial gentamicin concentration of 20 mg/L. In addition, the maximum removal efficiency of gentamicin (84.32%) under sunlight occurred at pH 6, contact time of 60 min, ZnO concentration of 200 mg/L, and initial gentamicin concentration of 20 mg/L. The results demonstrated that the photocatalytic UV/ZnO process exposed to UV-C or natural sunlight could be an effective process for removing antibiotic gentamicin from the aqueous solution.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.1433-1439,fig.,ref.
Twórcy
autor
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
autor
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
autor
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
autor
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
autor
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
autor
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
Bibliografia
- 1. KHOSRAVI R., HOSSINI H., HEIDARI M., FAZLZADEH M., BIGLARI H., TAGHIZADEH A., BARIKBIN B. Electrochemical decolorization of reactive dye from synthetic wastewater by mono-polar aluminum electrodes system. Int. J. Electrochem. Sci. 12, 4745, 2017.
- 2. BIGLARI H., AFSHARNIA M., ALIPOUR V., KHOSRAVI R., SHARAFI K., MAHVI A.H. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environ. Sci. Pollut. Res. 24, 4105, 2017.
- 3. XIAN Q., HU L., CHEN H., CHANG Z., ZOU H. Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. J. Environ. Manage. 91, 2657, 2010.
- 4. BIGLARI H., SAEIDI M., ALIPOUR V., RAHDAR S., SOHRABI Y., KHAKSEFIDI R., NAROOIE M.R., ZAREI A., AHAMADABADI M. Review on hydrochemical and health effects of it in Sistan and Baluchistan groundwater’s, Iran. Int. J. Pharm. Technol. 8, 17900, 2016.
- 5. AHMED M.B., ZHOU J.L., NGO H.H., GUO W. Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci. Total Environ. 532, 112, 2015.
- 6. KARIMAEI M., SHARAFI K., MORADI M., GHAFFARI H.R., BIGLARI H., ARFAEINIA H., FATTAHI N. Optimization of a methodology for simultaneous determination of twelve chlorophenols in environmental water samples using: In situ derivatization and continuous sample drop flow microextraction combined with gas chromatography-electron-capture detection. Anal. Methods. 9, 2865, 2017.
- 7. NEZAMZADEH-EJHIEH A., SHIRZADI A. Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere. 107, 136, 2014.
- 8. BIGLARI H., SAEIDI M., ALIPOUR V., RAHDAR S., SOHRABI Y., KHAKSEFIDI R., NAROOIE M.R., ZAREI A., AHAMADABADI M. Prospect of disinfection byproducts in water resources of Zabol. Int. J. Pharm. Technol. 8, 17856, 2016.
- 9. HOMEM V., SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices–a review. J. Environ. Manage. 92, 2304, 2011.
- 10. KÜMMERER K. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 52, 5, 2003.
- 11. SANDERSON H., JOHNSON D.J., WILSON C.J., BRAIN R.A., SOLOMON K.R. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol. Lett. 144, 383, 2003.
- 12. ABDELGHANY S.M., QUINN D.J., INGRAM R.J., GILMORE B.F., DONNELLY R.F., TAGGART C.C., SCOTT C.J. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int. J. Nanomedicine. 7, 4053, 2012.
- 13. KLAVARIOTI M., MANTZAVINOS D., KASSINOS D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35, 402, 2009.
- 14. RAHDAR S., KHAKSEFIDI R., ALIPOUR V., SAEIDI M., NAROOIE M.R., SALIMI A., BIGLARI H., BANESHI M.M., AHAMADABADI M. Phenol adsorptive by cumin straw ash from aqueous environments. IIOAB J. 7, 536, 2016.
- 15. SHOKRI M., BEHNEZHADI A., MORADIAN P. Antibiotic gentamicin excluded photocatalytic TiO₂ nanoparticles in aqueous solutions using irradiated with UV-A. First Natl. Conf. Nanomater. Nanotechnologies. 2011.
- 16. RADJENOVIĆ J., PETROVIĆ M., VENTURA F., BARCELÓ D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601, 2008.
- 17. RIVERA-UTRILLA J., PRADOS-JOYA G., SÁNCHEZ-POLO M., FERRO-GARCÍA M., BAUTISTA-TOLEDO I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J. Hazard. Mater. 170, 298, 2009.
- 18. ESPLUGAS S., BILA D.M., KRAUSE L.G.T., DEZOTTI M. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater. 149, 631, 2007.
- 19. PIRSAHEB M., SHAHMORADI B., BEIKMOHAMMADI M., AZIZI E., HOSSINI H., ASHRAF G.M. Photocatalytic degradation of Aniline from aqueous solutions under sunlight illumination using immobilized Cr: ZnO nanoparticles. Sci. Rep. 7, 1473, 2017.
- 20. BANESHI M.M., NARAGHI B., RAHDAR S., BIGLARI H., SAEIDI M., AHAMADABADI M., NAROOIE M.R., SALIMI A., KHAKSEFIDI R., ALIPOUR V. Removal of remazol black B dye from aqueous solution by electrocoagulation equipped with iron and aluminium electrodes. IIOAB J. 7, 529, 2016.
- 21. SIRTORI C., ZAPATA A., OLLER I., GERNJAK W., AGÜERA A., MALATO S. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res. 43, 661, 2009.
- 22. MÉNDEZ-ARRIAGA F., TORRES-PALMA R., PÉTRIER C., ESPLUGAS S., GIMENEZ J., PULGARIN C. Ultrasonic treatment of water contaminated with ibuprofen. Water Res. 42, 4243, 2008.
- 23. SALEHI K., SHAHMORADI B., BAHMANI A., PIRSAHEB M., SHIVARAJU H. Optimization of reactive black 5 degradation using hydrothermally synthesized NiO/TiO₂ nanocomposite under natural sunlight irradiation. Desalin. Water Treat. 57, 25256, 2016.
- 24. SAJJADI S.A., ASGARI G., BIGLARI H., CHAVOSHANI A. Pentachlorophenol removal by persulfate and microwave processescoupled from aqueous environments. J. Eng. Appl. Sci. 11, 1058, 2016.
- 25. SAEIDI M., BIGLARI H., RAHDAR S., BANESHI M.M., AHAMADABADI M., NAROOIE M.R., SALIMI A., KHAKSEFIDI R. The adsorptive acid orange 7 using Kenya tea pulps ash from aqueous environments. J. Glob. Pharma Technol. 9, 13, 2017.
- 26. RAHDAR S., AHAMADABADI M., KHAKSEFIDI R., SAEIDI M., NAROOIE M.R., SALIMI A., BIGLARI H., BANESHI M.M. Evaluation of phenol removal from aqueous solution by banana leaf ash. J. Glob. Pharma Technol. 9, 20, 2017.
- 27. ALIPOUR V., REZAEI L., ETESAMIRAD M.R., RAHDAR S., NAROOIE M.R., SALIMI A., HASANI J., KHAKSEFIDI R., SADAT S.A., BIGLARI H. Feasibility and applicability of solar disinfection (SODIS) for point-of-use water treatment in Bandar Abbas, South of Iran. J. Glob. Pharma Technol. 9, 40, 2017.
- 28. PALOMINOS R.A., MONDACA M.A., GIRALDO A., PEÑUELA G., PÉREZ-MOYA M., MANSILLA H.D. Photocatalytic oxidation of the antibiotic tetracycline on TiO₂ and ZnO suspensions. Catal. Today. 144, 100, 2009.
- 29. MANSOURI A., SHAHREZAEI F., ZINATIZADEH A., AZANDARYANI A.H., PIRSAHEB M., SHARAFI K. Preparation of poly ethyleneimine (PEI))/nano titania (TiO₂) multilayer film on quartz tube by layer-by-layer self-assembly and its applications for petroleum refinery wastewater treatment. J. Taiwan Inst. Chem. Eng. 45, 2501, 2014.
- 30. DADBAN SHAHAMAT Y., SADEGHI M., SHAHRYARI A., OKHOVAT N., BAHRAMI ASL F., BANESHI M.M. Heterogeneous catalytic ozonation of 2, 4-dinitrophenol in aqueous solution by magnetic carbonaceous nanocomposite: catalytic activity and mechanism. Desalin. Water Treat. 57, 20447, 2016.
- 31. AHAMADABADI M., SAEIDI M., RAHDAR S., NAROOIE M.R., SALIMI A., ALIPOUR V., KHAKSEFIDI R., BANESHI M.M., BIGLARI H. Assessment of the chemical quality of groundwater resources in Chabahaar City using GIS software in 2016. Res. J. Appl. Sci. 11, 1399, 2016.
- 32. ÜSTÜN G., SOLMAZ S., BIRGÜL A. Regeneration of industrial districtwastewater using a combination of Fenton process and ion exchange e a case study. Resour Conserv Recycl. 52, 425, 2007.
- 33. CHEN Y., LU C., XU L., MA Y., HO W., ZHU J.-J. Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties. CrystEngComm. 12, 3740, 2010.
- 34. LIU T., LI B., HAO Y., YAO Z. MoO3-nanowire membrane and Bi₂Mo₃O 12/MoO₃ nano-heterostructural photocatalyst for wastewater treatment. Chem. Eng. J. 244, 382, 2014.
- 35. SHI W., YAN Y., YAN X. Microwave-assisted synthesis of nano-scale BiVO₄ photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin. Chem. Eng. J. 215, 740, 2013.
- 36. ZHANG L., JIANG Y., DING Y., POVEY M., YORK D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanoparticle Res. 9, 479, 2007.
- 37. JAFARI A.J., DEHGHANIFARD E., KALANTARY R.R., GHOLAMI M., ESRAFILI A., YARI A.R., BANESHI M.M. PHOTOCATALYTIC DEGRADATION OF ANILINE IN AQUEOUS SOLUTION USING ZnO NANOPARTICLES. Environ. Eng. Manag. J. 15, 2016.
- 38. ROMAÑA D.L., BROWN K., GUINARD J.X. Sensory Trial to Assess the Acceptability of Zinc Fortificants Added to Iron-fortified Wheat Products. J. Food Sci. 67, 461, 2002.
- 39. PREMANATHAN M., KARTHIKEYAN K., JEYASUBRAMANIAN K., MANIVANNAN G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanomedicine Nanotechnology, Biol. Med. 7, 184, 2011.
- 40. SHAOJUN J., ZHENG S., DAQIANG Y., LIANHONG W., LIANGYAN C. Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J. Environ. Sci. 20, 806, 2008.
- 41. NAGAJYOTHI P., SREEKANTH T., TETTEY C.O., JUN Y.I., MOOK S.H. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. 24, 4298, 2014.
- 42. POURAN S.R., RAMAN A.A.A., DAUD W.M.A.W. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J. Clean. Prod. 64, 24, 2014.
- 43. ELMOLLA E., CHAUDHURI M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. J. Hazard. Mater. 170, 666, 2009.
- 44. NADDEO V., MERIÇ S., KASSINOS D., BELGIORNO V., GUIDA M. Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Res. 43, 4019, 2009.
- 45. ELMOLLA E.S., CHAUDHURI M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO₂ and UV/H2O₂/TiO₂ photocatalysis. Desalination. 252, 46, 2010.
- 46. MOLINARI R., PIRILLO F., LODDO V., PALMISANO L. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO₂ and a nanofiltration membrane reactor. Catal. Today. 118, 205, 2006.
- 47. LOFRANO G., LIBRALATO G., ADINOLFI R., SICILIANO A., IANNECE P., GUIDA M., AL E. Photo catalytic degradation of the antibiotic chloramphenicol and effluent toxicityeffects. Ecotoxicol. Environ. Saf. 123, 65, 2016.
- 48. TYROVOLA K., PEROULAKI E., NIKOLAIDIS N.P. Modeling of arsenic immobilization by zero valent iron. Eur. J. Soil Biol. 43, 356, 2007.
- 49. BANESHI M.M., REZAEI S., SADAT A., MOUSAVIZADEH A., BARAFRASHTEHPOUR M., HEKMATMANESH H. Investigation of photocatalytic degradation of diazinon using titanium dioxide (TiO₂) nanoparticles doped with iron in the presence of ultraviolet rays from the aqueous solution. Biosci. Biotechnol. Res. Commun. 10, 60, 2017.
- 50. PRADOS-JOYA G., SÁNCHEZ-POLO M., RIVERAUTRILLA J., FERRO-GARCIA M. Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation. Water Res. 45, 393, 2011.
- 51. JUNG Y.J., KIM W.G., YOON Y., KANG J.-W., HONG Y.M., KIM H.W. Removal of amoxicillin by UV and UV/H₂O₂ processes. Sci. Total Environ. 420, 160, 2012.
- 52. SHAOJUN J., ZHENG S., YIN D., WANG L., CHEN L. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere. 73, 377, 2008.
- 53. EL-SAYED G., DESSOUKI H., JAHIN H., IBRAHIEM S. Photocatalytic Degradation of Metronidazole in Aqueous Solutions by Copper oxide nanoparticles. J. Basic Environ. Sci. 1, 102, 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-31b7f563-0a80-4415-8ce0-35d147b08ee4