Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 6 |
Tytuł artykułu

Implication of stem structures for photosynthetic functions in select herbaceous plants

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For our investigation two species of herbaceous plants were selected with different morphological and anatomical stem structures: Japanese knotweed and topinambur. The distribution of chlorophyll (chl) in photosynthetically active tissues, divided into younger and older parts of stems, was studied by the use of the chl autofluorescence phenomenon. The content of chl in the stems of the topinambur was lower than in leaves by ca. 40-50%. In the J. knotweed, the quantity of chl was lower by ca. 70% in the young fragments of stems than in leaves, whereas in the older parts it approached the levels found in leaves. The chl a/b ratio was generally higher in leaves compared with stems. It was also found that the maximal efficiency of PSII (Fv/Fm) did not differ greatly between leaves and stems in these two plant species. Despite this, the maximal net photosynthetic rates (PN) in the stems of both species were low and kept to level of 0-0.5 μmol·m⁻²·s⁻¹. Much higher levels of PN were noted in the leaves of J. knotweed at ca. 10 and ca. 14 μmol·m⁻²·s⁻¹ in the topinambur. The stems of herbaceous plants are characterized by high resistance of the epidermis, although they do not have a cork limiting light and transpiration. As a result, similar to lignified, the stems of herbaceus plants use mainly internal CO₂ from respiration in the process of photosynthesis.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
21
Numer
6
Opis fizyczny
p.1687-1696,fig.,ref.
Twórcy
autor
  • Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
  • The Jan Kochanowski University, Swietokrzyska 15, 25-406 Kielce, Poland
Bibliografia
  • 1. KHAROUK V. I., MIDDLETON E. M., SPENCER S. L., ROCK B. N., WILLIAMS D. L. Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem. Water Air Soil Poll. 82, 483, 1995.
  • 2. NILSEN E. T. Stem photosynthesis: Extent, patterns, and role in plant carbon economy. In: Gartner, B. (Ed.): Plant Stems: Physiology and Functional Morphology. Academic Press, San Diego, pp. 223-240, 1995.
  • 3. SCHMIDT J., BATIC F., PFANZ H. Photosynthetic performance of leaves and twigs of evergreen holly (Ilex aquifolium L.). Phyton 40, 179, 2000.
  • 4. TOKARZ K., PILARSKI J. Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple-tree. Acta Physiol. Plant. 27, 201, 2005.
  • 5. PILARSKI J., TOKARZ K., KOCUREK M. Optical Properties of the Cork stems and trunks of beech (Fagus Sylvatica L.). Pol. J. Environ. Stud. 17, 773, 2008.
  • 6. DIMA E., MANETAS Y., PSARAS G. K. Chlorophyll distribution pattern in inner stem tissues: evidence from epifluorescence microscopy and reflectance measurements in 20 woody species. Trees 20, 513, 2006.
  • 7. WITTMANN C., PFANZ H., LORETO F., CENTRITTO M., PIETRINI F., ALESSIO G. Stem CO2 release under illumination: corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration? Plant Cell Environ. 29, 1149, 2006.
  • 8. BERVEILLER D., KIERZKOWSKI D., DAMESIN C. Interspecific variability of stem photosynthesis among tree species. Tree Physiol. 27, 53, 2007.
  • 9. YIOTIS C., PETROPOULOU Y., MANETAS Y. Evidence for light-independent and steeply decreasing PSII efficiency along twig depth in four tree species. Photosynthetica 47, 223, 2009.
  • 10. VAN CLEVE B., FORREITTER C., SAUTER J., APEL K. Pith cells of poplar contain photosynthetic active chloroplasts. Planta 189, 70, 1993.
  • 11. KOCUREK M., PILARSKI J. Irradiance distribution in leaves and shoots of lignified and herbaceous plants. Pamiętnik Puławski 144, 91, 2007 [In Polish].
  • 12. WITTMANN C., ASCHAN G., PFANZ H. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic Appl. Ecol. 2, 145, 2001.
  • 13. PILARSKI J. Diurnal and seasonal changes in the intensity of photosynthesis in stems of lilac (Syringa vulgaris L.). Acta Physiol. Plant. 24, 29, 2002.
  • 14. CERNUSAK L. A., MARSHALL J. D. Photosynthetic refixation in branches of western white pine. Funct. Ecol. 14, 300, 2000.
  • 15. CERASOLI S., MCGUIRE M. A., FARIA J., MOURATO M., SCHMIDT M., PEREIRA J. S, CHAVES M. M., TESKEY R. O. CO2 efflux, CO2 concentration and photosynthetic refixation in stems of Eucalyptus globulus (Labill.). J. Exp. Bot. 60, 99, 2009.
  • 16. HIBBERD J. M., QUICK W. P. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415, 451, 2002.
  • 17. KOCUREK M., PILARSKI J. Activity of C4 enzymes in C3-type herbaceous plants. Photosynthetica 49, 473, 2011.
  • 18. MANETAS Y. Probing corticular photosynthesis through in vivo chlorophyll fluorescence measurements: evidence that high internal CO2 levels suppress electron flow and increase the risk of photoinhibition. Physiol. Plant. 120, 509, 2004.
  • 19. DAMESIN C. Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytol. 158, 465, 2003.
  • 20. IVANOV A. G., KROL M., SVESHNIKOV D., MALMBERG G., GARDESTRÖM P., HURRY V., ÖQUIST G., HUNER N. P. A. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Planta 223, 1165, 2006.
  • 21. ASCHAN G., PFANZ H., VODNIK D., BATIC F. Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica 43, 55, 2005.
  • 22. BJÖRKMAN O, DEMMIG B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origin. Planta 170, 489, 1987.
  • 23. JOHNSON G. N., YOUNG A. J., SCHOLES J. D., HORTON P. The dissipation of excess excitation energy in British plant species. Plant Cell Environ. 16, 673, 1993.
  • 24. WELLBURN A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307, 1994.
  • 25. STRASSER R. J., SRIVASTAVA A., TSIMILLIMICHAEL M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou, G. and Govindjee (Eds). Chlorophyll Fluorescence a Signature of Photosynthesis, Advances in Photosynthesis and Respiration. Springer, the Netherlands, 19, 321, 2004.
  • 26. WALTERS R.G.Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 411, 435, 2005.
  • 27. TERASHIMA I., HANBA Y. T., THOLEN D., NIINEMETS U. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 155, 108, 2011.
  • 28. DAI Y., SHEN Z., LIU Y., WANG L., HANNAWAY D., LU H. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Env. Exp. Bot. 65, 177, 2009.
  • 29. ELIÁŠ P., ČIAMPAROVÁ M. Chlorophyll contents and chloroplast ultrastructure in leaves of two forest hemiephemeroids. Photosynthetica 20, 107, 1986.
  • 30. YAN K., CHEN P., SHAO H.B., ZHAO S.J., ZHANG L.H., ZHANG L.W. Photosynthetic characterization of Jerusalem artichoke during leaf expansion. Acta Physiol. Plant. 34, 353, 2011.
  • 31. YANG X. G., WEI X., XIE K. Enhanced antioxidant protection at the early stages of leaf expansion in ginkgo under natural environmental conditions. Biol. Plant. 56, 181, 2012.
  • 32. VICK J. K., YOUNG D., R. Corticular photosynthesis: A mechanism to enhance shrub expansion in coastal environments. Photosynthetica 47, 26, 2009.
  • 33. YIOTIS C., MANETAS Y. Sinks for photosynthetic electron flow in green petioles and pedicels of Zantedeschia aethiopica: evidence for innately high photorespiration and cyclic electron flow rates. Planta 232, 523, 2010.
  • 34. YIOTIS C, PSARAS G. K., MANETAS Y. Seasonal photosynthetic changes in the green-stemmed Mediterranean shrub Calicotome villosa: a comparison with leaves Photosynthetica 46, 262, 2008.
  • 35. GOULD K.S., DUDLE D.A., NEUFELD H.S. Why some stems are red: cauline anthocyanins shield photosystem II against high light stress J. Exp. Bot. 61, 2707, 2010.
  • 36. PILARSKI J., TOKARZ K. Chlorophyll distribution in the stems and trunk of beech trees. Acta Physiol. Plant. 28, 233, 2006.
  • 37. LANGENFELD-HEYSER R., SCHELLA B., BUSCHMANN K., SPECK F. Microautoradiographic detection of CO2-fixation in lenticel chlorenchyma of young Fraxinus excelsior L. stem in early spring. Trees 10, 255, 1996.
  • 38. PILARSKI J. Diffusion of carbon dioxide through the cork and stomata in lilac. Acta Physiol. Plant. 16, 137, 1994.
  • 39. TESKEY R. O., SAVEYN A., STEPPE K., MCGUIRE M. A. Origin, fate and significance of CO2 in tree stems. New Phytologist 177, 17, 2008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3124d9f7-3e96-4b8c-9324-03cd1fd38fb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.