Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 76 | 05 |
Tytuł artykułu

Determination of the activity of selected antioxidant enzymes during bovine laminitis, induced by oligofructose overload

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alimentary oligofructose (OF) overload induces acute laminitis in dairy heifers. We examined the correlation between acute bovine laminitis and antioxidant levels by measuring the activities of malondialdehyde (MDA), catalase (CAT), reduced glutathione (GSH), and superoxide dismutase (SOD) in dairy heifers with acute bovine laminitis. A total of 12 clinically healthy non-pregnant Chinese Holstein heifers, aged between 18-26 months (20.67 ± 3.01 mo), weighing 335-403 kg (379.71 ± 19.87 kg), and with BCS ranging from 2.7 to 3.3 were selected and divided into two groups of six animals: an OF-treated group and a control group. The OF-treated heifers (n = 6) received 17 g/kg BW of oligofructose dissolved in 2 L/100 kg BW of tap water, whereas the control heifers (n = 6) received 2 L/100 kg BW of tap water. Blood samples of OF-treated and the control heifers were collected at –72 h before, as well as 0, 6, 12, 18, 24, 36, 48, 60 and 72 h after OF overload. Malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) activity levels were measured by authenticated standard methods using blood samples. The mean concentration of superoxide dismutase (SOD) was significantly lower (p < 0.01) in the OF-treated heifers from 24 h to 72 h and significantly lower (p < 0.05) at 18 h compared to the control group. Malondialdehyde (MDA) level was significantly higher (p < 0.01) at 24 h to 72 h and significant increased (p < 0.05) at 12 h to 18 h in OF-treated heifers compared with healthy heifers. There were no significant differences in GSH and CAT activities between the control and treatment groups. Our study showed that inadequate levels of antioxidants (enzymatic and non-enzymatic) may be linked to oxidative stress in sick heifers. OF-treated heifers had decreased SOD and increased MDA in response to acute laminitis. Therefore, SOD, GSH, CAT, and MDA activities may play a dynamic role in the etiopathogenesis of acute laminitis in dairy heifers. However, further detailed research is required to describe these responses and to develop strategies to control acute laminitis.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
76
Numer
05
Opis fizyczny
p.289-295,fig.,ref.
Twórcy
autor
  • Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
  • Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, P. R. China
autor
  • Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
  • Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, P. R. China
autor
  • Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
  • Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, P. R. China
autor
  • Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
  • Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, P. R. China
autor
  • Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
  • Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, P. R. China
autor
  • Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
  • Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, P. R. China
autor
  • Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
  • Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, P. R. China
Bibliografia
  • 1. Anderson M. E.: Glutathione: an overview of biosynthesis and modulation. Chem. Biol. Interact. 1998, 111-112, 1-4.
  • 2. Bozukluhan K., Merhan O., Öğün M., Cihan M., Gökçe G.: Determination of the levels of some oxidative stress parameters in calves with omphalitis. F. Ü. Sağ. Bil. Vet. Derg. 2016, 30, 79-81.
  • 3. Celi P.: Oxidative stress in ruminants, [in:] Mandelker L., Vajdovich P. (eds.): Studies on Veterinary Medicine, Oxidative Stress in Applied Basic Research and Clinical Practice 5. Springer 2011, p. 191-231.
  • 4. Celi P.: The role of oxidative stress in small ruminants’ health and production. R. Bras. Zootec. 2010, 39, 348-363, doi: http://dx.doi.org/10.1590/ S1516-35982010001300038.
  • 5. Celi P., Di Trana A., Claps S.: Effects of the plane of nutrition on oxidative stress in goats during the peripartum period. Vet. J. 2010, 184, 95-99, doi:10.1016/j.tvjl.2009.01.014.
  • 6. Danscher A. M., Enemark J. M. D., Telezhenko E., Capion N., Ekstrøm C. T., Thøfner M. B.: Oligofructose overload induces lameness in cattle. J. Dairy Sci. 2009, 92, 607-616, doi: 10.3168/jds.2008-1271.
  • 7. Danscher A. M., Tølbøll T. H., Wattle O.: Biomechanics and histology of bovine claw suspensory tissue in early acute laminitis. J. Dairy Sci. 2010, 93, 53-62, doi: 10.3168/jds.2009-2038.
  • 8. Del Rio D., Stewart A. J., Pellegrini N.: A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316-328.
  • 9. Folnožić I., Turk R., Đuričić D., Vince S., Pleadin J., Flegar-Meštrić Z., Valpotić H., Dobranić T., Gračner D., Samardžija M.: Influence of body condition on serum metabolic indicators of lipid mobilization and oxidative stress in dairy cows during the transition period. Reprod. Domest. Anim. 2015, 50, 910-917, doi: 10.1111/rda.12608.
  • 10. Gawel S., Wardas M., Niedworok E., Wardas P.: MDA as a lipid peroxidation marker. Wiad. Lek. 2004, 57, 453-455.
  • 11. Gonzales R., Auclair C., Voisin E., Gautero H., Dhermy D., Boivin P.: Superoxide dismutase, catalase and glutathione peroxydase in red blood cells from patients with malignant diseases. Cancer Res. 1998, 44, 4137-4139.
  • 12. Gonzales R., Auclair C., Voisin E., Gautero H., Dhermy D., Boivin P.: Superoxide dismutase, catalase, and glutathione peroxidase in red blood cells from patients with malignant diseases. Cancer Res.1984, 44, 4137-4139.
  • 13. Hailemariam D., Mandal R., Saleem F., Dunn S. M., Wishart D. S., Ametaj B. N.: Identification of predictive biomarkers of disease state in transition dairy cows. J. Dairy Sci. 2014, 97, 2680-2693, doi: 10.3168/jds.2013-6803.
  • 14. Halliwell B.: Antioxidant defence mechanism: from the beginning to the end (of the beginning). Free Rad. Res. 1999, 31, 261-272.
  • 15. Halliwell B., Chirico S.: Lipid peroxidation: its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 715-725.
  • 16. Halliwell B., Gutteridge J. M. C.: Antioxidant defenses, [in:] Halliwell B., Gutteridge J. M. C. (eds.): Free Radicals in Biology and Medicine. Oxford Clarendon Press 1999, p. 200-216.
  • 17. Heinecke L. F., Grzanna M. W., Au A. Y., Mochal C. A., Rashmir-Raven A., Frondoza C. G.: Inhibition of cyclooxygenase-2 expression and prostaglandin E2 production in chondrocytes by avocado soybean unsaponifiables and epigallocatechin gallate. Osteoarthritis Cartilage 2010, 18, 220-227, doi: 10.1016/j.joca.2009.08.015.
  • 18. Kargin F., Fidanci U. R.: Kidney diseases and antioxidative metabolism in dogs. Turk. J. Vet. Anim. Sci. 2001, 25, 607-613.
  • 19. Khoshvaghti A., Askari A., Nazifi S., Ghane M.: Evaluation of some antioxidant enzymes in cattle infected with foot and mouth virus. İ. Ü. Vet. Fak. Derg. 2014, 40, 70-75.
  • 20. Kidd P. M.: Glutathione: systemic protectant against oxidative and free radical damage. Alternative Med. Rev. 1997, 2, 155-176.
  • 21. Kontos H. A., Wei E. P.: Superoxide production in experimental brain injury. J. Neurosurg. 1986, 64, 803-807, doi: 10.3171/jns.1986.64.5.0803.
  • 22. Kumar A., Dwivedi H. P., Swarup D.: Oxidative Stress in Periparturient Metabolic Disorders, [in:] Production Diseases of Dairy Animals 2011, p. 19-27.
  • 23. Lopaczynski W., Zeisel S. H.: Antioxidants, programmed cell death, and cancer. Nutr. Res. 2001, 21, 295-307, doi: https://doi.org/10.1016/S0271-5317(00)00288-8.
  • 24. Lykkesfeldt J., Svendsen O.: Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J. 2007, 173, 502-511, doi: 10.1016/j.tvjl.2006.06.005.
  • 25. Mates J. M.: Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicol. 2000, 153, 83-104, doi: https://doi.org/10.1016/S0300-483X(00)00306-1.
  • 26. Nath R., Prasad R. L., Sarma S.: Oxidative stress biomarkers in cross bred cows affected with foot and mouth disease. Ind. J. Anim. Res. 2014, 48, 628-632, doi: 10.5958/0976-0555.2014.00045.4.
  • 27. Nimse S. B., Pal D.: Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 2015, 5, 27986-28006, doi: 10.1039/C4RA13315C.
  • 28. Osorio J. S., Fraser B. C., Graugnard D. E., Singh S. S., Drackley J. K., Garrett E. F., Loor J. J.: Corium tissue expression of genes associated with inflammation, oxidative stress, and keratin formation in relation to lameness in dairy cows. J. Dairy Sci. 2012, 95, 6388-6396, doi: 10.3168/jds.2011-5143.
  • 29. Özcan O., Erdal H., Çakırca G., Yönden Z.: Oxidative stress and its impacts on intracellular lipids, proteins, and DNA. J. Clin. Exp. Invest. 2015, 6, 331-336, doi: https://doi.org/10.5799/ahinjs.01.2015.03.0545.
  • 30. Palmieri B., Sblendorio V.: Oxidative stress tests: overview on reability and use part I. Eur. Rev. Med. Pharmacol. Sci. 2007, 11, 309-342.
  • 31. Patterson R. A., Leake D. S.: Human serum, cysteine, and histidine inhibit the oxidation of low-density lipoprotein less at acidic pH. FEBS Lett. 1998, 434, 317-21, doi: 10.1016/s0014-5793(98)01002-3.
  • 32. Seyrek K., Yaylak E., Akşit H.: Serum Sialic Acid, Malondialdehyde, Retinol, Zinc, And Copper Concentrations. Bull. Vet. Inst. Pulawy 2008, 52, 281-284.
  • 33. Sezer K., Keskin M.: Role of the free oxygen radicals on the pathogenesis of the diseases. Sağ. Bil.Vet. Derg. F. Ü. 2014, 28, 49-56.
  • 34. Shan X. O., Aw T. Y., Jones D. P.: Glutathione dependent protection against oxidative injury. Pharmacol. Ther. 1990, 47, 61-71.
  • 35. Simsek S., Yuce A., Utuk A. E.: Determination of serum malondialdehyde levels in sheep naturally infected with Dicrocoelium dendriticum. F.Ü. Sağ. Bil. Derg. 2006, 20, 217-220.
  • 36. Singh R. P., Murthy K. N. C., Jayaprakasha G. K.: Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agr. Food chem. 2002, 50, 81-86, doi: 10.1021/jf010865b.
  • 37. Talukder S., Gabai G., Celi P.: The use of digital infrared thermography and measurement of oxidative stress biomarkers as tools to diagnose foot lesions in sheep. Small Rum. Res. 2015, 127, 80-85, doi: https://doi.org/10.1016/j.smallrumres.2015.04.006
  • 38. Thoefner M. B., Pollitt C. C., Van Eps A. W., Milinovich G. J., Trott D. J., Wattle O., Andersen P. H.: Acute bovine laminitis: A new induction model using alimentary oligofructose overload. J. Dairy Sci. 2004, 87, 2932-2940, doi: 10.3168/jds.S0022-0302 (04)73424-4.
  • 39. Thomsen P. T., Munksgaard L., Tøgersen F. A.: Evaluation of a lameness scoring system for dairy cows. J. Dairy Sci. 2008, 91, 119-126, doi: 10.3168/jds.2007-0496.
  • 40. Tomlinson D. J., Mülling C. H., Fakler T. M.: Invited review: formation of keratins in the bovine claw: roles of hormones, minerals, and vitamins in functional claw integrity. J. Dairy Sci. 2004, 87, 797-809, doi: 10.3168/jds.S0022-0302 (04)73223-3.
  • 41. Turk R., Folnožić I., Đuričić D., Vince S., Flegar-Meštrić Z., Dobranić T., Valpotić H., Samardžija M.: Relationship between paraoxonase-1 activity and lipid mobilisation in transition dairy cows. Vet. Archiv 2016, 86, 601-612.
  • 42. Turk R., Podpečan O., Mrkun J., Kosec M., Flegar-Meštrić Z., Perkov S., Starič J., Robić M., Belić M., Zrimšek P.: Lipid mobilization and oxidative stress as metabolic adaptation processes in dairy heifers during the transition period. Anim. Reprod. Sci. 2013, 141, 109-115, doi: https://doi.org/10.1016/j.anireprosci.2013.07.014.
  • 43. Verhagen H., Buijsse B., Jansen E., Bueno-de-Mesquita B.: The state of antioxidant affairs. Nutri. Today 2006, 41, 244-250.
  • 44. Winrow V. R., Winyard P. G., Morris C. J., Blake D. R.: Free radicals in inflammation: second messengers and mediators of tissue destruction. Br. Med. Bull. 1993, 49, 506-522.
  • 45. Young I. S., Woodside J. V.: Antioxidants in health and disease. J. Clin. Pathol. 2001, 54, 176-186, doi: 10.1136/jcp.54.3.176.
  • 46. Yurdakul G., Saritas Z. K.: Evaluation of clinic, radiographic and some biochemical blood serum and synovial fluid parameters of arthritis cases in calves. Kocatepe Vet. J. 2013, 6, 13-22, doi: https://doi.org/10.22319/rmcp.v10i1.4727.
  • 47. Yurdakul I., Yildirim B. A.: Assessment of Oxidative Status in Foot Diseases of Sheep. Acta Sci. Vet. 2018, 46, 1-6, doi: 10.22456/1679-9216.89196.
  • 48. Zengin K., Mert H., Mert N.: Catalase activity and the levels of MDA, AOPP in sheeps with subclinical mastitis. Res. Agri. Vet. Sci. 2017, 1, 5-11.
  • 49. Zhao X. J., Wang X. Y., Wang J. H., Wang Z. Y., Wang L., Wang Z. H.: Oxidative stress and imbalance of mineral metabolism contribute to lameness in dairy cows. Biol. Trac. Elem. Res. 2015, 164, 43-49, doi: 10.1007/s12011-014-0207-1.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-2cbfdee8-ee1e-4d2a-9adc-ba20710e893a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.