Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 2 |
Tytuł artykułu

Cryptic Diversity in Mongolian Vespertilionid Bats (Vespertilionidae, Chiroptera, Mammalia). Results of the Mongolian-German Biological Expeditions Since 1962, No. 299

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In contrast to the Eastern Palaearctic region a high degree of cryptic diversity was discovered among temperate bats of the Western Palaearctic region in the last ten years. Climatic oscillations caused severe changes in the distribution of species throughout the Palaearctic region during the Pleistocene. Exploring multiple taxa can help to understand general evolutionary differentiation processes. In the present study genetic variation within and among 94 Mongolian vespertilionid bats of six genera (Hypsugo, Eptesicus, Vespertilio, Myotis, Plecotus, and Nyctalus) was screened by sequencing a 798 bp fragment of the mitochondrial ND1 gene and then subsequently compared with those of Western Palaearctic taxa. This allowed first insights in the differentiation among a wide range of bats across the Palaearctic region. A total of 16 distinct mitochondrial lineages were found in Mongolia. Thirteen lineages differed by at least five percent sequence divergence from Western Palaearctic species. Only three lineages (Eptesicus nilssonii, Vespertilio murinus, and Nyctalus noctula) showed lower divergence values. Our data demonstrate a substantial differentiation between most Western and Eastern Palaearctic vespertilionid bats. Estimations of divergence times showed that most divergence appeared prior to the Pleistocene, but current distributions of bats were most likely shaped by the usage of multiple refugia during glaciations.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
14
Numer
2
Opis fizyczny
p.243-264,ref.
Twórcy
autor
  • Museum für Naturkunde — Leibniz Institute for Research on Evolution and Biodiversity, Invalidenstrasse 43, D-10115 Berlin, Germany
autor
  • Landesfachausschuss (LFA) Säugetierkunde im Naturschutzbund (NABU) der Länder Brandenburg und Berlin, Dorfstraβe 2d, D-16818 Radensleben, Germany
  • Mongolian National University, Faculty of Biology, Department of Zoology, Ulaanbaatar 210646, Mongolia
autor
  • Johannes Gutenberg-Universität Mainz, Department of Ecology — Population Biology, Johann-Joachim Becherweg 13, 55099 Mainz, Germany
  • Museum für Naturkunde — Leibniz Institute for Research on Evolution and Biodiversity, Invalidenstrasse 43, D-10115 Berlin, Germany
  • Ulm University, Institute of Experimental Ecology, Albert Einstein Allee 11, D-89069 Ulm, Germany
autor
  • Sächsisches Landesamt für Umwelt und Geologie, Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
autor
  • Martin-Luther-Universität Halle-Wittenberg, Department of Zoology, Domplatz 4, D-06099 Halle/Saale, Germany
autor
  • Museum für Naturkunde — Leibniz Institute for Research on Evolution and Biodiversity, Invalidenstrasse 43, D-10115 Berlin, Germany
Bibliografia
  • 1. I. Ahlén 2010. Nymffladdermus Myotis alcathoe — en nyupptäckt art i Sverige. [Alcathoe's bat Myotis alcathoe, a new member of Sweden's bat fauna.] Fauna och Flora, 105(4): 8–15. Google Scholar
  • 2. I. V. Artyushin , A. A. Bannikova , V. S. Lebedev , and S. V. Kruskop . 2009. Mitochondrial DNA relationships among North Palaearctic Eptesicus (Vespertilionidae, Chiroptera) and past hybridization between common serotine and northern bat. Zootaxa, 2262: 40–52. Google Scholar
  • 3. A. G. Bannikov 1954. Mammals of the Mongolian Peoples Republic. Academy of Sciences of the USSR, Moscow, 669 pp. Google Scholar
  • 4. P. Benda , and K. A. Tsytsulina . 2000. Taxonomic revision of Myotis mystacinus group (Mammalia: Chiroptera) in the western Palearctic. Acta Societatis Zoologicae Bohemicae, 64:331–398. Google Scholar
  • 5. P. Benda , S. Aulagnier , A. M. Hutson , K. Tsytsulina , A. Karatas , J. Palmeirim , and M. Paunović . 2011. Myotis aurascens. IUCN red list of threatened species. Available from http://www.iucnredlist.org/details/136553/0. Google Scholar
  • 6. N. A. Bobrinskoj 1926. Note préliminaire sur les Chiroptères de l'Asie Centrale. Comptes Rendus de l'Académie des Sciences de l'URSS, A: 95–98. Google Scholar
  • 7. E. L. Clare, B. K. Lim, M. B. Fenton, and P. D. N. Hebert . 2011. Neotropical bats: estimating species diversity with DNA barcodes. PloS ONE, 6(7): e22648. Google Scholar
  • 8. L. Dalen , E. Fuglei , and P. Hersteinsson . 1994. Population history and genetic structure of a circumpolar species: the arctic fox. Biological Journal of the Linnean Society, 84: 79–89. Google Scholar
  • 9. D. Dolch , N. Batsaikhan , K. Thiele , F. Burger , I. Scheffler , A. Kiefer , F. Mayer , R. Samjaa , M. Stubbe , L. Krall , and D. Steinhauser . 2007. Contributions to the Chiroptera of Mongolia with first evidences on species communities and ecological niches. Erforschung biologischer Ressourcen der Mongolei (Halle/Saale), 10: 407–458. Google Scholar
  • 10. A. J. Drummond , and A. Rambaut . 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7: 214. Google Scholar
  • 11. A. J. Drummond, S. Y. W. Ho, M. J. Phillips, and A. Rambaut . 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5): e88. Google Scholar
  • 12. A. J. Drummond , S. Y. W. Ho , N. Rawlence , and A. Rambaut . 2007. A rough guide to BEAST 1.4. Available from https://code.google.com/p/beast-mcmc/. Google Scholar
  • 13. O. Flagstad , and K. H. Rø ed. 2003. Refugial origins of reindeer (Rangifer tarandus) inferred from mitochondrial DNA sequences. Evolution, 57: 658–670. Google Scholar
  • 14. D. E. Fontaneto , C. Herniou, M. Boschetti, G. Caprioli , C. R. Melone , and T. G. Barraclough . 2007. Independently evolving species in asexual bdelloid rotifers. PLoS Biology, 5(4): e87. Google Scholar
  • 15. C. M. Francis , A. V. Borisenko, N. V. Ivanova, J. L. Eger, B. K. Lim, A. Guillén-Servent, S. V. Kruskop , I. Mackie , and P. D. N. Hebert . 2010. The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS ONE, 5(9): e12575. Google Scholar
  • 16. T. A. Hall 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98. Google Scholar
  • 17. M. Hasegawa , H. Kishino , and T. Yano . 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22: 160–174. Google Scholar
  • 18. G. M. Hewitt 2000. The genetic legacy of the Quaternary ice ages. Nature, 405: 907–913. Google Scholar
  • 19. G. M. Hewitt 2004a. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London, 359B: 183–95. Google Scholar
  • 20. G. M. Hewitt 2004. The structure of biodiversity — insights from molecular phylogeography. Frontiers in Zoology, 1:4. Google Scholar
  • 21. I. Horáček, and V. Hanák . 1983–84. Comments on the systematics and phylogeny of Myotis nattereri (Kuhl, 1818). Myotis, 21–22: 20–29. Google Scholar
  • 22. I. Horáček , V. Hanák , and J. Gaisler . 2000. Bats of the Palaearctic region: a taxonomic and biogeographic review. Pp. 11–157, in Proceedings of the VIIIth European Bat Research Symposium ( B. W. Wołoszyn , ed.). Institute of Systematics and Evolution of Animals PAS, Kraków, 280 pp. Google Scholar
  • 23. C. Ibáñez , J. L. Garcia-Mudarra , M. Ruedi , B. Stadelmann , and J. Juste . 2006. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterologica, 8: 277–297. Google Scholar
  • 24. C. M. I. Jan , K. Frith , A. M. Glover , R. K. Butlin , C. D. Scott , F. Greenaway , M. Ruedi , A. C. Frantz , D. A. Dawson , and J. D. Altringham . 2010. Myotis alcathoe confirmed in the UK from mitochondrial and microsatellite DNA. Acta Chiropterologica, 12: 471–483. Google Scholar
  • 25. K. Kawai , M. Nikaido , M. Harada , S. Matsumura , L. K. Lin , Y. Wu , M. Hasegawa , and N. Okada . 2002. Intra- and interfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data. Journal of Molecular Evolution, 55: 284–301. Google Scholar
  • 26. K. Kawai , M. Nikaido , M. Harada , S. Matsumura , L. K. Lin , Y. Wu , M. Hasegawa , and N. Okada . 2003. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Molecular Phylogenetics and Evolution, 28: 297–307. Google Scholar
  • 27. K. Kawai , N. Kondo , N. Sasaki , D. Fukui , H. Dewa , M. Sato , and Y. Yamaga . 2006. Distinguishing between cryptic species Myotis ikonnikovi and M. brandtii gracilis in Hokkaido, Japan: evaluation of a novel diagnostic morphological feature using molecular methods. Acta Chiropterologica, 8: 95–102. Google Scholar
  • 28. K. Kawai , D. Fukui , M. Sato , M. Harada , and K. Maeda . 2010. Vespertilio murinus Linnaeus, 1758 confirmed in Japan from morphology and mitochondrial DNA. Acta Chiropterologica, 12: 463–470. Google Scholar
  • 29. A. Kiefer 2007. Phylogeny of Western Palaearctic long-eared bats (Mammalia, Chiroptera, Plecotus) — a molecular perspective. PhD Thesis, Gutenberg University, Mainz, 132 pp. Google Scholar
  • 30. S. V. Kruskop , A. V. Borisenko , N. V. Ivanova , K. L. Burton , and J. L. Eger . 2012. Genetic diversity of northeastern Palaearctic bats as revealed by DNA barcodes. Acta Chiropterologica, 14: 1–14. Google Scholar
  • 31. S. Kumar , K. Tamura , and M. Nei . 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5: 150–163. Google Scholar
  • 32. G. Marthinsen , L. Wennerberg , R. Solheim , and J. T. Lifjeld . 2009. No phylogeographic structure in the circumpolar snowy owl (Bubo scandiacus). Conservation Genetics, 10: 923–933. Google Scholar
  • 33. V. A. Matveev , S. V. Kruskop , and D. A. Kramerov . 2005. Revalidation of Myotis petax Hollister, 1912 and its new status in connection with M. daubentonii Kuhl, 1817 (Vespertilionidae, Chiroptera). Acta Chiropterologica, 7: 23–37. Google Scholar
  • 34. F. Mayer, and O. Von Helversen . 2001. Cryptic diversity in European bats. Proceedings of the Royal Society of London, 268B: 1825–1832. Google Scholar
  • 35. F. Mayer , C. Dietz , and A. Kiefer . 2007. Molecular species identification boosts bat diversity. Frontiers in Zoology, 4: 4. Google Scholar
  • 36. M. C. McKenna , and S. K. Bell . 1997. Classification of mammals above the species level. Columbia University Press, New York, 631 pp. Google Scholar
  • 37. M. T. Monaghan , R. Wild , M. Elliot , T. Fujisawa , M. Balke , D. J. G. Inward , D. C. Lees , R. Ranaivosolo , P. Eggleton , T. G. Barraclough , and A. P. Vogler . 2009. Accelerated species inventory on Madagascar using coalescentbased models of species delineation. Systematic Biology, 58:298–311. Google Scholar
  • 38. S. W. Murray , P. Campbell , T. Kingston , A. Zubaid , C. M. Francis , and T. H. Kunz . 2012. Molecular phylogeny of hipposiderid bats from Southeast Asia and evidence of cryptic diversity. Molecular Phylogenetics and Evolution, 62:597–611. Google Scholar
  • 39. I. Niermann, M. Biedermann, W. Bogdanowicz, R. Brinkmann, Y. Le Bris, M. Ciechanowski, C. Dietz, I. Dietz, P. Estók, O. Von Helversen, et al. 2007. Biogeography of the recently described Myotis alcathoe von Helversen and Heller, 2001. Acta Chiropterologica, 9: 361–378. Google Scholar
  • 40. S. Palumbi , A. Martin , S. Romano , W. O. McMillan , L. Stice , and G. Grabowski . 1991. The simple fool's guide to PCR version 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, 44 pp. Google Scholar
  • 41. J. Pons , T. G. Barraclough , J. Gomez-Zurita , A. Cardoso , D. P. Duran , S. Hazell , S. Kamoun , W. D. Sumlin , and A. P. Vogler . 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55: 595–609. Google Scholar
  • 42. R Development Core Team. 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Google Scholar
  • 43. M. Ruedi , and F. Mayer . 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21: 436–448. Google Scholar
  • 44. J. Rydell 1993. Eptesicus nilssonii. Mammalian Species, 430: 1–7. Google Scholar
  • 45. J. Rydell , and H. J. Baagøe . 1994. Vespertilio murinus. Mammalian Species, 467: 1–6. Google Scholar
  • 46. J. Rydell , K.-B. Strann , and J. R. Speakman . 1994. First record of breeding bats above the Arctic Circle: northern bats at 68–70°N in Norway. Journal of Zoology (London), 233: 335–339. Google Scholar
  • 47. T. Schmitt 2007. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4: 11. Google Scholar
  • 48. N. B. Simmons 2005. Order Chiroptera. Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder , eds.). The Johns Hopkins University Press, Baltimore, 2142 pp. Google Scholar
  • 49. V. E. Sokolov , and V. N. Orlov . 1980. Identification guide to the mammals of Mongolia. Nauka Press, Moscow, 351 pp. Google Scholar
  • 50. M. D. Sorenson , and E. A. Franzosa . 2007. TreeRot, version 3. Boston University, Boston, MA. http://people.bu.edu/msoren/TreeRot.html. Google Scholar
  • 51. M. D. Sorenson , and T. W. Quinn . 1998. Numts: a challenge for avian systematics and population biology. Journal of the American Ornithologists' Union, 115: 214–221. Google Scholar
  • 52. F. Spitzenberger , P. P. Strelkov , H. Winkler , and E. Haring . 2006. A preliminary revision of the genus Plecotus (Chiroptera, Vespertilionidae) based on genetic and morphological results. Zoologica Scripta, 35: 187–230. Google Scholar
  • 53. B. Stadelmann , L. K. Lin , T. H. Kunz , and M. Ruedi . 2007. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular Phylogenetics and Evolution, 43: 32–48. Google Scholar
  • 54. M. Stubbe , and N. Chotolchu . 1968. Zur Säugetierfauna der Mongolei. Mitteilungen aus dem Zoologischen Museum Berlin, 44: 5–121. Google Scholar
  • 55. D. L. Swofford 2002. PAUP* phylogenetic analysis using parsimony. Sinauer Associates, Sunderland, MA. Available from http://paup.csit.fsu.edu/. Google Scholar
  • 56. P. Taberlet , L. Fumagalli , A. Wust-Saucy , and J. Cosson . 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 8: 1923–1934. Google Scholar
  • 57. K. Tamura , M. Nei , and S. Kumar . 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the USA, 101: 11030–11035. Google Scholar
  • 58. K. Tamura , J. Dudley , M. Nei , and S. Kumar . 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596–1599. Google Scholar
  • 59. J. D. Thompson , D. G. Higgins , and T. J. Gibson . 1994. CLUSTAL-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673–4680. Google Scholar
  • 60. D. S. Tinnin , J. L. Dunnum , J. Salazar-Bravo , N. Batsaikhan , M. S. Burt , S. L. Gardner , and T. L. Yates . 2002. Contributions to the mammalogy of Mongolia, with a checklist of species for the country. Special Publication of the Museum of Southwestern Biology, 6: 1–38. Google Scholar
  • 61. O. Von Helversen , K.-G. Heller , F. Mayer , A. Nemeth , M. Volleth , and P. Gombkötö . 2001. Cryptic mammalian species: a new species of whiskered bat (Myotis alcathoe n. sp.) in Europe. Naturwissenschaften, 88: 217–223. Google Scholar
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-27de88ce-d0d7-4831-be04-fffb686af06d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.