Warianty tytułu
Języki publikacji
Abstrakty
A characteristic feature of forest-dwelling bats is that they regularly switch day roosts. The additional time associated with finding or assessing the availability of a new roost, moving offspring to the new roost, coordinating with other group members, and meeting any increased energetic demands that may be associated with these behaviors may influence the number and duration of feeding bouts of reproductive females. To examine the influence of roost-switching on nocturnal activity patterns we radio-tagged lactating female silver-haired bats (Lasionycteris noctivagans) and monitored them on nights when they moved to a new roost site and nights when no roost shift occurred. The typical activity pattern on a non-move night consisted of an initial long bout away from the day roost (median length: 177.4 min) followed by alternating bouts in (50.6 min) and away (57.0 min) from the roost for the rest of the night. On move nights bats reduced the length of their first absent period (82.7 min) and increased the number of trips from the roost, although neither the length of these subsequent absent periods nor the total time absent from the roosts differed from non-move nights. Similarly, total time spent in roosts did not differ between move and non-move nights, but bats made more and shorter visits on move nights. Visits to original and new roosts were not synchronous among colony members, and the length of time for individuals from the same colony to move to a new roost varied from 1 to 4 h. Our results indicate that roost switching did not influence the total time spent in or away from day roosts. Rather, bats moved between the original roost, the new roost, and foraging areas with much greater frequency on move nights.
Słowa kluczowe
Twórcy
autor
- Department of Biological Sciences and Environmental Studies Program, Western Michigan University, Kalamazoo, MI 49008-5410, USA
autor
- Eastern Oregon University, One University Blvd., La Grande, OR 97850-2899, USA
Bibliografia
- 1. M. D. Adams , B. S. Law , and K. O. French . 2009. Vegetation structure influences the vertical stratification of open- and edge-space aerial-foraging bats in harvested forests. Forest Ecology and Management, 258: 2090–2100. Google Scholar
- 2. H. D. J. N. Aldridge , and R. M. Brigham . 1991. Factors influencing foraging time in two aerial insectivores: the bird Chordeiles minor and the bat Eptesicus fuscus. Canadian Journal of Zoology, 69: 62–69. Google Scholar
- 3. F. W. Anderka , and P. Angehrn . 1992. Transmitter attachment methods. Pp. 135–146, in Wildlife telemetry: remote monitoring and tracking of animals ( I. G. Priede and S. M. Swift , eds.). Ellis Howard, New York, xii + 708 pp. Google Scholar
- 4. E. L. P. Anthony , M. H. Stack , and T. H. Kunz . 1981. Night roosting and the nocturnal time budget of the little brown bat, Myotis lucifugus: effects of reproductive status, prey density, and environmental conditions. Oecologia, 51: 151–156. Google Scholar
- 5. D. Audet 1990. Foraging behavior and habitat use by a gleaning bat, Myotis myotis (Chiroptera: Vespertilionidae). Journal of Mammalogy, 71: 420–427. Google Scholar
- 6. R. M. R. Barclay 1982. Night roosting behavior of the little brown bat, Myotis lucifugus. Journal of Mammalogy, 63: 464–474. Google Scholar
- 7. R. M. R. Barclay 1989. The effect of reproductive condition on the foraging behavior of female hoary bats, Lasiurus cinereus. Behavioral Ecology and Sociobiology, 24: 31–37. Google Scholar
- 8. B. J. Betts 1998. Roosts used by maternity colonies of silverhaired bats in northeastern Oregon. Journal of Mammalogy, 79: 643–650. Google Scholar
- 9. R. T. Brooks 2009. Habitat-associated and temporal patterns of bat activity in a diverse forest landscape of southern New England, USA. Biodiversity and Conservation, 18: 529–545. Google Scholar
- 10. C. M. C. Catto , P. A. Racey , and P. J. Stephenson . 1995. Activity patterns of the serotine bat (Eptesicus serotinus) at a roost in southern England. Journal of Zoology (London), 235: 635–644. Google Scholar
- 11. B. S. Clark , D. M. Leslie Jr. , and T. S. Carter . 1993. Foraging activity of adult female Ozark big-eared bats (Plecotus townsendii ingens) in summer. Journal of Mammalogy, 74: 422–427. Google Scholar
- 12. L. H. Crampton , and R. M. R. Barclay . 1996. Habitat selection by bats in fragmented and unfragmented aspen mixedwood stands of different ages. Pp. 238–259, in Bats and forests symposium ( R. M. R. Barclay and R. M. Brigham , eds.). British Columbia Ministry of Forests, Victoria, Canada, xiv + 292 pp. Google Scholar
- 13. S. Daniel , C. Korine , and B. Pinshow . 2008. Central-place foraging in nursing, arthropod-gleaning bats. Canadian Journal of Zoology, 86: 623–626. Google Scholar
- 14. M. Dietz , and E. K. V. Kalko . 2007. Reproduction affects flight activity in female and male Daubenton's bats, Myotis daubentoni. Canadian Journal of Zoology, 85: 653–664. Google Scholar
- 15. A. C. Entwistle , P.A. Racey , and J. R. Speakman . 1996. Habitat exploitation by a gleaning bat, Plecotus auritus. Philosophical Transactions of the Royal Society of London, 351B: 921–931. Google Scholar
- 16. H. G. Erkert 1982. Ecological aspects of bat activity rhythms. Pp. 201–242, in Ecology of bats ( T. H. Kunz , ed.). Plenum Press, New York, 425 pp. Google Scholar
- 17. M. B. Fenton 1969. The carrying of young by females of three species of bats. Canadian Journal of Zoology, 47: 158–159. Google Scholar
- 18. M. B. Fenton , N. G. H. Boyle , T. M. Harrison , and D. J. Oxley . 1977. Activity patterns, habitat use, and prey selection by some African insectivorous bats. Biotropica, 9: 73–85. Google Scholar
- 19. J. L. Gittleman , and S. D. Thompson . 1988. Energy allocation in mammalian reproduction. American Zoologist, 28: 863–875. Google Scholar
- 20. S. D. Grindal , and R. M. Brigham . 1998. Short-term effects of small-scale habitat disturbance on activity by insectivorous bats. Journal of Wildlife Management, 62: 996–1003. Google Scholar
- 21. M. Henry , D. W. Thomas , R. Vaudry , and M. Carrier . 2002. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). Journal of Mammalogy, 83: 767–774. Google Scholar
- 22. G. L. Holloway , and R. M. R. Barclay . 2000. Importance of prairie riparian zones to bats in southeastern Alberta. Ecoscience, 7: 115–122. Google Scholar
- 23. G. Kerth , C. Ebert , and C. Schmidtke . 2006. Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein's bats. Proceedings of the Royal Society of London, 273B: 2785–2790. Google Scholar
- 24. G. Kerth , and K. Reckardt . 2003. Information transfer about roosts in female Bechstein's bats: an experimental study. Proceedings of the Royal Society of London, 270B: 511–515. Google Scholar
- 25. T. H. Kunz 1973. Resource utilization: temporal and spatial components of bat activity in central Iowa. Journal of Mammalogy, 54: 14–32. Google Scholar
- 26. T. H. Kunz 1982. Lasionycteris noctivagans. Mammalian Species, 172: 1–5. Google Scholar
- 27. A Kurta , G. P. Bell , K. A. Hagy , and T. H. Kunz . 1989. Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiological Zoology, 62: 804–818. Google Scholar
- 28. A. Kurta , T. H. Kunz , and K. A. Nagy . 1990. Energetics and water flux of free-ranging big brown bats (Eptesicus fuscus) during pregnancy and lactation. Journal of Mammalogy, 71: 59–65. Google Scholar
- 29. A Kurta , S. W. Murray , and D. H. Miller . 2002. Roost selection and movements across the summer landscape. Pp. 118–129, in The Indiana bat: biology and management of an endangered species ( A. Kurta and J. Kennedy , eds.). Bat Conservation International, Austin, Texas, xii + 253 pp. Google Scholar
- 30. S. E. Lewis 1995. Roost fidelity of bats: a review. Journal of Mammalogy, 76: 481–496. Google Scholar
- 31. C. Maier 1992. Activity patterns of pipistrelle bats (Pipistrellus pipistrellus) in Oxfordshire. Journal of Zoology (London), 228: 69–80. Google Scholar
- 32. T. A. Mattson , S. W. Buskirk , and N. L. Stanton . 1996. Roost sites of the silver-haired bat (Lasionycteris noctivagans) in the Black Hills, South Dakota. Great Basin Naturalist, 56: 247–253. Google Scholar
- 33. G. F. McCracken , and G. S. Wilkinson . 2000. Bat mating systems. Pp. 321–362, in Reproductive biology of bats ( E. G. Crichton and P. H. Krutzsch , eds.). Academic Press, New York, xi + 510 pp. Google Scholar
- 34. J. A. McLean , and J. R. Speakman . 1997. Non-nutritional maternal support in the brown long-eared bat. Animal Behaviour, 54: 1193–1204. Google Scholar
- 35. A. D. Morris , D. A. Miller , and M. C. Kalcounis-Rueppell . 2010. Use of forest edges by bats in a managed pine forest landscape. Journal of Wildlife Management, 74: 26–34. Google Scholar
- 36. S. W. Murray , and A. Kurta . 2004. Nocturnal activity of the endangered Indiana bat (Myotis sodalis). Journal of Zoology (London), 262: 197–206. Google Scholar
- 37. C. F. J. O'Donnell 2001. Home range and use of space by Chalinolobus tuberculatus, a temperate rainforest bat from New Zealand. Journal of Zoology (London), 253: 253–264. Google Scholar
- 38. C. F. J. O'Donnell 2002. Influence of sex and reproductive status on nocturnal activity of long-tailed bats (Chalinolobus tuberculatus). Journal of Mammalogy, 83: 794–803. Google Scholar
- 39. G. Pfalzer , and J. Kusch . 2003. Structure and variability of bat social calls: implications for specificity and individual recognition. Journal of Zoology (London), 261: 21–33. Google Scholar
- 40. P. A. Racey , and J. R. Speakman . 1987. The energy costs of pregnancy and lactation in heterothermic bats. Symposia of the Zoological Society of London, 57: 107–125. Google Scholar
- 41. P. A. Racey , and S. M. Swift . 1985. Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. I. Foraging behaviour. Journal of Animal Ecology, 54: 205–215. Google Scholar
- 42. D. S. Reynolds , and T. H. Kunz . 2000. Changes in body composition during reproduction and postnatal growth in the little brown bat, Myotis lucifugus (Chiroptera: Vespertilionidae). Ecoscience, 7: 10–17. Google Scholar
- 43. M. Ruedi 1993. Variations in night roost behavior of Myotis daubentoni during reproduction: influence of precipitation and temperature. Mammalia, 57: 307–315. Google Scholar
- 44. J. Rydell 1993. Variation in foraging activity of an aerial insectivorous bat during reproduction. Journal of Mammalogy, 74: 503–509. Google Scholar
- 45. C. B. Shiel , R. E. Shiel , and J. S. Fairley . 1999. Seasonal changes in the foraging behaviour of Leisler's bats (Nyctalus leisleri) in Ireland as revealed by radio-telemetry. Journal of Zoology (London), 249: 347–358. Google Scholar
- 46. S. M. Swift 1997. Roosting and foraging behaviour of Natterer's bats (Myotis nattereri) close to the northern border of their distribution. Journal of Zoology (London), 242: 375–384. Google Scholar
- 47. R. J. Taylor , and M. G. O'Neill . 1988. Summer activity patterns of insectivorous bats and their prey in Tasmania. Australian Wildlife Research, 15: 533–539. Google Scholar
- 48. M. J. Vonhof , and R. M. R. Barclay . 1996. Roost-site selection and roosting ecology of forest-dwelling bats in southern British Columbia. Canadian Journal of Zoology, 74: 1797–1805. Google Scholar
- 49. M. J. Vonhof , and J. C. Gwilliam . 2007. Intra- and interspecific patterns of day roost selection by three species of forest-dwelling bats in Southern British Columbia. Forest Ecology and Management, 252: 165–175. Google Scholar
- 50. G. S. Wilkinson 1992. Information transfer at evening bat colonies. Animal Behaviour, 44: 501–518. Google Scholar
- 51. G. S. Wilkinson 1995. Information transfer in bats. Symposia of the Zoological Society of London, 67: 345–360. Google Scholar
- 52. L. C. Wilkinson , and R. M. R. Barclay . 1997. Differences in the foraging behaviour of male and female big brown bats (Eptesicus fuscus) during the reproductive period. Ecoscience, 4: 279–285. Google Scholar
- 53. C. K. R. Willis , and R. M. Brigham . 2004. Roost switching, roost sharing and social cohesion: forest-dwelling big brown bats, Eptesicus fuscus, conform to the fission-fusion model. Animal Behaviour, 68: 495–505.
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-27518a21-e494-4b3a-947f-fa972d94645e