Warianty tytułu
Języki publikacji
Abstrakty
The dose–response curves for IAA-induced growth in maize coleoptile segments were studied as a function of time and temperature. In addition, the kinetics of growth rate responses at some auxin concentrations and temperatures was also compared. It was found that the dose–response curves for IAA-induced elongation growth were, independently of time and temperature, bell-shaped with an optimal concentration at 10⁻⁵ M IAA. The kinetics of IAA-induced growth rate responses depended on IAA concentration and temperature, and could be separated into two phases (biphasic reaction). The first phase (very rapid) was followed by a long lasting one (second phase), which began about 30 min after auxin addition. For coleoptile segments incubated at 30°C, the amplitudes of the first and second phase were significantly higher, when compared with 25°C, at all IAA concentrations studied. However, when coleoptile segments were incubated at 20°C, the elongation growth of coleoptile segments treated with suboptimal IAA concentrations was diminished, mainly as a result of both phases reduction. In conclusion, we propose that the shape of the dose–response curves for IAAinduced growth in maize coleoptile segments is connected with biphasic kinetic of growth rate response.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.437-442,fig.,ref.
Twórcy
autor
- Department of Plant Physiology, Faculty of Biology, University of Silesia, Jagiellonska 28, 40032 Katowice, Poland
autor
- Department of Plant Physiology, Faculty of Biology, University of Gdansk, Pilsudskiego 46, 81378 Gdynia, Poland
autor
- Department of Plant Physiology, Faculty of Biology, University of Silesia, Jagiellonska 28, 40032 Katowice, Poland
Bibliografia
- Becker D, Hedrich R (2002) Channelling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol Biol 49:349–356
- Bonner J (1949) Limiting factors and growth of the Avena coleoptile. Am J Bot 36:323–332
- Bonner J, Foster RJ (1955) The growth-time relationships of the auxin-induced growth of Avena coleoptile sections. J Exp Bot 6:293–302
- Bridges IG, Wilkins MB (1973) Effects of morphactin on indole-3ylacetic acid. Transport, growth and geotropic response in cereal coleoptiles. J Exp Bot 24:711–723
- Christian M, Steffens B, Scheneck D, Burmester S, Böttger M, Lüthen H (2006) How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biol 8:346–352
- Cleland RE (1972) The dosage–response curve for auxin-induced cell elongation. A re-evaluation. Planta 104:1–9
- Davies PJ (2004) Biosynthesis, signal transduction, action!. Kluwer, Dordrecht
- Foster RJ, McRae DH, Bonner J (1952) Auxin-induced growth inhibition, a natural consequence of two-point attachment. Proc Natl Acad Sci USA 38:1014–1022
- Fuchs I, Philippar K, Hedrich R (2006) Ion channels meet auxin action. Plant Biol 8:353–359
- Gray WW, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7203
- Hager A (2003) Role of the plasma membrane H⁺-ATPase in auxininduced elongation growth: historical and new aspects. J Plant Res 116:483–505
- Karcz W, Burdach Z (2002) A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. J Exp Bot 53:1089–1098
- Karcz W, Burdach Z (2007) Effect of temperature on growth, proton extrusion and membrane potential in maize (Zea mays L.) coleoptile segments. Plant Growth Regul 52:141–150
- Karcz W, Stolarek J, Pietruszka M, Malkowski E (1990) The doseresponse curves for IAA induced elongation growth and acidification of the incubation medium of Zea mays L. coleoptile segments. Physiol Plant 80:257–261
- Karcz W, Lüthen H, Böttger M (1999) Effect of IAA and 4-Cl-IAA on growth rate in maize coleoptile segments. Acta Physiol Plant 21:133–139
- Kim YS, Min JK, Kim D, Jung J (2001) A soluble auxin binding protein, ABP₅₇: purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in auxin effect on plant plasma membrane H⁺-ATPase. J Biol Chem 276:10730–10736
- Löbler M, Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). J Biol Chem 260:9848–9853
- Lüthen H, Böttger M (1992) A high tech low cost auxanometer for high resolution determination of elongation rates in six simultaneous experimental set-ups. Mittelung Institut Allgemeine Botanik Hamburg 24:13–22
- Lüthen H, Böttger M (1993) Induction of elongation in maize coleoptiles by hexachloroiridate and its interrelation with auxin and fusicoccin action. Physiol Plant 89:77–86
- MacDowall FDM, Sirois JC (1977) Importance of time after excision and pH on the kinetics of response of wheat coleoptile segments to added indoleacetic acid. Plant Physiol 59:405–410
- Minorsky PV (1989) Temperature sensing by plants: a review and hypothesis. Plant Cell Environ 12:119–135
- Nissen P (1985) Dose responses of auxins. Physiol Plant 65:357–374
- Nissl D, Zenk MH (1969) Evidence against induction of protein synthesis during auxin-induced initial elongation of Avena coleoptiles. Planta 89:323–341
- Orbović V, Poff KL (2007) Effect of temperature on growth and phototropism of Arabidopsis thaliana seedlings. J Plant Growth Regul 26:222–228
- Pope DG (1993) Evidence for two indoleacetic acid-induced growth response in the Avena straight-growth indoleacetic acid assay. Plant Physiol 102:409–415
- Rapparini F, Tam YY, Cohen JD, Slovin JP (2002) Indole-3-acetic acid metabolism in Lemma gibba undergoes dynamic changes in response to growth temperature. Plant Physiol 128:1410–1416
- Ray PM, Dohrmann U (1977) Characterization of naphthalene–acetic acid binding to receptor sites on cellular membranes of maize coleoptile tissue. Plant Physiol 59:357–364
- Ray PM, Ruesink AW (1962) Kinetic experiments on the nature of the growth mechanism in oat coleoptile cells. Dev Biol 4:377–397
- Rayle DL, Cleland RE (1972) The in vitro acid-growth response: relation to in vivo growth responses and auxin action. Planta 104:282–296
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-26abd841-2c3a-4a43-97bc-7032ad2fcbfe