Warianty tytułu
Języki publikacji
Abstrakty
Background: Traumatic brain injury (TBI) is in part associated with the disruption of the blood-brain barrier. In this study, we analysed the histopathological changes in E-cadherin and vascular endothelial growth factor (VEGF) expression after TBI in rats. Materials and methods: The rats were divided into two groups as the control and the trauma groups. Sprague-Dawley rats were subjected to TBI with a weight-drop device using 300 g/1 m weight-height impact. After 5 days of TBI, blood samples were taken under ketamine hydroxide anaesthesia and biochemical analyses were performed. The control and trauma groups were compared in terms of biochemical values. Results: There was no change in glutathione (GSH) levels and blood-brain barrier permeability. However, malondialdehyde (MDA) and myeloperoxidase (MPO) activity levels increased in the trauma group. In the histopathological examination, choroid plexus in the lateral ventricle, near the pia mater membrane, was removed. In the traumatic group, some of epithelial cells were hyperplasic. Some of them were peeled off the apical surface and had local degeneration. Conclusions: In addition, we observed congestion in capillary vessels and mononuclear cell infiltration around the vessels. After TBI, the increase in VEGF levels, vascular permeability, and interaction with VEGF receptors in endothelial cells lead to oedema of the vessel wall. On the other hand, E-cadherin expression decreased in the tight-junction structures between epithelial cells and basal membrane, resulting in an increase in cerebrospinal fluid in the intervillous area. (Folia Morphol 2018; 77, 4: 642–648)
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.642–648,fig.,ref.
Twórcy
autor
- Department of Anatomy, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
autor
- Department of Histology and Embryology, Faculty of Medicine, University of Dicle, Diyarbakir, Turkey
autor
- Department of Anatomy, Faculty of Medicine, University of Dicle, Diyarbakir, Turkey
Bibliografia
- 1. Blennow K, Hardy J, Zetterberg H. The neuropathology and neurobiology of traumatic brain injury. Neuron. 2012; 76(5): 886–899, doi:10.1016/j.neuron.2012.11.021, indexed in Pubmed: 23217738.
- 2. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969; 40(3): 648–677, indexed in Pubmed: 5765759.
- 3. Brunetti B, Sarli G, Preziosi R, et al. E-cadherin expression in canine mammary carcinomas with regional lymph node metastases. J Vet Med A Physiol Pathol Clin Med. 2003; 50(10): 496–500, indexed in Pubmed: 15157016.
- 4. Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol. 2007; 17(1): 120–127, doi: 10.1016/j.conb.2006.09.004, indexed in Pubmed: 17223033.
- 5. Chodobski A, Szmydynger-Chodobska J. Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech. 2001; 52(1): 65–82, doi:10.1002/1097-0029(20010101)52:1<65::AID-JEMT9>3.0.CO;2-4, indexed in Pubmed: 11135450.
- 6. Figarella-Branger D, Lepidi H, Poncet C, et al. Differential expression of cell adhesion molecules (CAM), neural CAM and epithelial cadherin in ependymomas and choroid plexus tumors. Acta Neuropathol. 1995; 89(3): 248–257, indexed in Pubmed: 7754745.
- 7. Garabedian BV, Lemaigre-Dubreuil Y, Mariani J. Central origin of IL-1beta produced during peripheral inflammation: role of meninges. Brain Res Mol Brain Res. 2000; 75(2): 259–263, indexed in Pubmed: 10686346.
- 8. Georgescu CV, Săftoiu A, Georgescu CC, et al. Correlations of proliferation markers, p53 expression and histological findings in colorectal carcinoma. J Gastrointestin Liver Dis. 2007; 16(2): 133–139, indexed in Pubmed: 17592558.
- 9. Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci. 2015; 36(7): 471–480, doi: 10.1016/j.tips.2015.04.003, indexed in Pubmed: 25979813.
- 10. Hakan T, Toklu HZ, Biber N, et al. Effect of COX-2 inhibitor meloxicam against traumatic brain injury-induced biochemical, histopathological changes and blood-brain barrier permeability. Neurol Res. 2010; 32(6): 629–635, doi: 10.1179/016164109X12464612122731, indexed in Pubmed: 19660237.
- 11. Hillegass LM, Griswold DE, Brickson B, et al. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods. 1990; 24(4): 285–295, indexed in Pubmed: 1963456.
- 12. Hirohashi S, Kanai Y. Cell adhesion system and human cancer morphogenesis. Cancer Sci. 2003; 94(7): 575–581, indexed in Pubmed: 12841864.
- 13. Ikeda J, Mies G, Nowak TS, et al. Evidence for increased calcium influx across the choroid plexus following brief ischemia of gerbil brain. Neurosci Lett. 1992; 142(2): 257–259, indexed in Pubmed: 1454224.
- 14. Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008; 27(55): 6920–6929, doi: 10.1038/onc.2008.343, indexed in Pubmed: 19029934.
- 15. Johanson CE, Miller M, Stopa E, et al. Disruption of the choroid plexus-CSF-ependymal wall nexus in CNS injury and aging models: Rescue by i.c.v. peptides. In 7th Congress of the Global College of Neuroprotection and Neuroregeneration, Stockholm, Sweden. 2010: 47.
- 16. Kaur C, Sivakumar V, Ling EA. Melatonin protects periventricular white matter from damage due to hypoxia. J Pineal Res. 2010; 48(3): 185–193, doi:10.1111/j.1600-079X.2009.00740.x, indexed in Pubmed: 20136703.
- 17. Kleine TO, Benes L. Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood-brain barrier and blood-cerebrospinal fluid barrier in healthy persons. Cytometry A. 2006; 69(3): 147–151, doi: 10.1002/cyto.a.20225, indexed in Pubmed: 16479603.
- 18. Krum JM, Khaibullina A. Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol. 2003; 181(2): 241–257, doi: 10.3201/eid0906.020485, indexed in Pubmed: 12781997.
- 19. Liu Y, Wang Y, Cheng C, et al. A relationship between p27(kip1) and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma. 2010; 27(2): 361–371, doi: 10.1089/neu.2008.0581, indexed in Pubmed: 19852587.
- 20. Maharaj ASR, Saint-Geniez M, Maldonado AE, et al. Vascular endothelial growth factor localization in the adult. Am J Pathol. 2006; 168(2): 639–648, doi: 10.2353/ajpath.2006.050834, indexed in Pubmed: 16436677.
- 21. Maharaj ASR, Walshe TE, Saint-Geniez M, et al. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med. 2008; 205(2): 491–501, doi: 10.1084/jem.20072041, indexed in Pubmed: 18268040.
- 22. Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994; 80(2): 291–300, doi: 10.3171/jns.1994.80.2.0291, indexed in Pubmed: 8283269.
- 23. Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA. 1998; 95(26): 15809–15814, indexed in Pubmed: 9861052.
- 24. Nagahiro S, Goto S, Korematsu K, et al. Disruption of the blood-cerebrospinal fluid barrier by transient cerebral ischemia. Brain Res. 1994; 633(1-2): 305–311, indexed in Pubmed: 8137165.
- 25. Nathanson JA, Chun LL. Immunological function of the blood-cerebrospinal fluid barrier. Proc Natl Acad Sci USA. 1989; 86(5): 1684–1688, indexed in Pubmed: 2784211.
- 26. Özevren H, Sevgi I, Deveci E, et al. Neuroprotective effects of potentilla fulgens on traumatic brain injury in rats. Anal Quant Cytol Histol. 2017; 39: 35–45.
- 27. Preston GW, Phillips DH. Quantification of a peptide standard using the intrinsic fluorescence of tyrosine. Anal Bioanal Chem. 2016; 408(9): 2187–2193, doi: 10.1007/s00216-016-9334-1, indexed in Pubmed: 26879647.
- 28. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982; 11(5): 491–498, doi: 10.1002/ana.410110509, indexed in Pubmed: 7103425.
- 29. Rothstein RP, Levison SW. Damage to the choroid plexus, ependyma and subependyma as a consequence of perinatal hypoxia/ischemia. Dev Neurosci. 2002; 24(5): 426–436, doi: 10.1159/000069052, indexed in Pubmed: 12640182.
- 30. Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009; 28(1-2): 151–166, doi: 10.1007/s10555-008-9179-y, indexed in Pubmed: 19153669.
- 31. Sharma HS, Zimmermann-Meinzingen S, Johanson CE. Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann NY Acad Sci. 2010; 1199: 125–137, doi: 10.1111/j.1749-6632.2009.05329.x, indexed in Pubmed: 20633118.
- 32. Sivakumar V, Lu J, Ling EA, et al. Vascular endothelial growth factor and nitric oxide production in response to hypoxia in the choroid plexus in neonatal brain. Brain Pathol. 2008; 18(1): 71–85, doi: 10.1111/j.1750-3639.2007.00104.x, indexed in Pubmed: 17924979.
- 33. Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol. 2013; 9(4): 211–221, doi: 10.1038/nrneurol.2013.29, indexed in Pubmed: 23458973.
- 34. Sohrab G, Angoorani P, Tohidi M, et al. Pomegranate (Punicagranatum) juice decreases lipid peroxidation, but has no effect on plasma advanced glycated end-products in adults with type 2 diabetes: a randomized double-blind clinical trial. Food Nutr Res. 2015; 59: 28551, indexed in Pubmed:26355954.
- 35. Steffen BJ, Breier G, Butcher EC, et al. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol. 1996; 148(6): 1819–1838, indexed in Pubmed: 8669469.
- 36. Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol. 2000; 59(7): 561–574, indexed in Pubmed: 10901227.
- 37. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991; 251(5000): 1451–1455, indexed in Pubmed: 2006419.
- 38. Ucar T, Tanriover G, Gurer I, et al. Modified experimental mild traumatic brain injury model. J Trauma. 2006; 60(3): 558–565, doi:10.1097/01.ta.0000209172.75637.db, indexed in Pubmed: 16531854.
- 39. Vercellino M, Votta B, Condello C, et al. Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J Neuroimmunol. 2008; 199(1-2): 133–141, doi: 10.1016/j.jneuroim.2008.04.035, indexed in Pubmed: 18539342.
- 40. Wheelock MJ, Shintani Y, Maeda M, et al. Cadherin switching. J Cell Sci. 2008; 121(Pt 6): 727–735, doi: 10.1242/jcs.000455, indexed in Pubmed:18322269.
- 41. Wolburg K, Gerhardt H, Schulz M, et al. Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tissue Res. 1999; 296(2): 259–269, indexed in Pubmed: 10382270.
- 42. Yang J, Dombrowski SM, Deshpande A, et al. VEGF/VEGFR-2 changes in frontal cortex, choroid plexus, and CSF after chronic obstructive hydrocephalus. J Neurol Sci. 2010; 296(1-2): 39–46, doi: 10.1016/j.jns.2010.06.012, indexed in Pubmed: 20619858.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-22bc08d0-c728-4aca-9c2d-f9d264082d17