Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |
Tytuł artykułu

Dynamics and controls of carbon use efficiency across China’s grasslands

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
China’s grasslands play a significant role in the carbon cycle. Accurately evaluating carbon use efficiency (CUE) of grassland ecosystems is of great importance. Therefore, we adopted moderate resolution imaging spectroradiometer documents to explore dynamics and controls of CUE across grasslands of China from 2001 to 2010. Results demonstrated that CUE presented an increasing trend (0 to 0.0067 year⁻¹) in the most studies regions except for desert steppe (-0.0046 to 0 year⁻¹). At spatial scale, the precipitation, temperature, and aridity index significantly regulated the dynamics of CUE in alpine grasslands. Furthermore, the different mechanisms are explored at the transect scale, and CUE revealed the positive correlation with aridity index (R² = 0.92, P<0.0001) and precipitation (R² = 0.88, P<0.0001), but a negative correlation with temperature (R² = 0.92, P<0.0001) in alpine grasslands. However, in temperate grasslands, CUE exposed the negative correlation with aridity index (R² = 0.40, P<0.0001) and precipitation (R² = 0.54, P<0.0001), but a positive correlation with temperature (R² = 0.56, P<0.0001). Moreover, precipitation was decreasing with the increased temperature in the alpine grasslands (R² = 0.85, P<0.0001) and temperature of grasslands (R² = 0.19, P<0.0001). In conclusion, CUE had a slight increased trend across grasslands in China, with higher precipitation, aridity index, and lower temperature promoting CUE in the alpine region – nevertheless restraining the CUE variations in grassland temperature. The better heat and water conditions in temperate grasslands than in alpine grasslands resulted in higher CUE in temperate grasslands.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
4
Opis fizyczny
p.1541-1550,fig.,ref.
Twórcy
autor
  • Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
  • School of Earth Science and Resources, Chang’an University, Xian, P.R.China
autor
  • Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
autor
  • Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P.R. China
Bibliografia
  • 1. ZHANG Y.J., YU G.R., YANG J., WIMBERLY M.C., ZHANG X.Z., TAO J., JIANG Y.B., ZHU J.T. Climatedriven global changes in carbon use efficiency. Global Ecology and Biogeography. 23 (2),144, 2014.
  • 2. LIU M., LIU G.H., ZHENG X.X. Spatial pattern changes of biomass, litterfall and coverage with environmental factors across temperate grassland subjected to various management practices. Landscape Ecology, 30 (3), 477, 2015.
  • 3. FU G., LI S.W., SUN W., SHEN Z.X. Relationships Between Vegetation Carbon Use Efficiency and Climatic Factors on the Tibetan Plateau. Canadian Journal of Remote Sensing. 42 (1), 16, 2016.
  • 4. CAMERON D.R., VAN OIJEN M., WERNER C., BUTTERBACH-BAHL K., GROTE R., HAAS E., HEUVELINK G.B.M., KIESE R., KROS J., KUHNERT M., LEIP A., REINDS G.J., REUTER H.I., SCHELHAAS M.J., DE VRIES.W., YELURIPATI J. Environmental change impacts on the C- and N-cycle of European forests: a model comparison study. Biogeosciences. 10, 1751, 2013.
  • 5. VUCETICH J.A., REED D.D., BREYMEYER A., DEGORSKI M., MROZ G.D., SOLON J., ROO-ZIELINSKA E., NOBLE R. Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine (Pinus sylvestris) forests. Forest Ecol Manag. 136, 135, 2000.
  • 6. BORZECKA-WALKER M., FABER A., KOZYRA J., PUDELKO R., MIZAK K., SYP A. Modelling the impact of climate change on miscanthus and willow for their potential productivity in Poland. Food Agric Environ. 10, 1437, 2012.
  • 7. ISE T., LITTON C.M., GIARDINA C.P., ITO A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. Journal of Geophysical Research Biogeosciences. 115 (G4), 707, 2015.
  • 8. KOSOBUCKI P., BUSZEWSKI B. Carbon changes in environment, from total organic carbon to soil organic matter. Polish Journal of Environmental Studies. 20 (1), 9, 2011.
  • 9. EVANH D., JOHNE D., RICHARDB T., MIQUEL G. Forest carbon use efficiency: is respiration a constant fraction of gross primary production. Global Change Biology. 13 (6), 1157, 2010.
  • 10. ZHANG Y.J., XU M., CHEN H., ADAMS J. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecology and Biogeography. 18 (3), 280, 2009.
  • 11. ZANOTELLI D., MONTAGNANI L., MANCA G., TAGLIAVINI M. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements. Biogeosciences. 10 (5), 3089, 2013.
  • 12. BRADFORD M.A., CROWTHER T.W. Carbon use efficiency and storage in terrestrial ecosystems. New Phytologist. 199 (1), 7, 2013.
  • 13. KWON Y., LARSEN C.P.S. Effects of forest type and environmental factors on forest carbon use efficiency assessed using MODIS and FIA data across the eastern USA. International Journal of Remote Sensing. 34 (23), 8425, 2013.
  • 14. LIETH H. Modeling the Primary Productivity of the World. Springer Berlin Heidelberg. 237, 1975.
  • 15. WARING R.H., LANDSBERG J.J., WILLIAMS M. Net primary production of forests: a constant fraction of gross primary production? Tree Physiology. 18 (2), 129, 1998.
  • 16. MCCREE K.J., TROUGHTON J.H. Non-Existence of an Optimum Leaf Area Index for the Production Rate of White Clover Grown Under Constant Conditions. Plant Physiology. 41 (10), 1615, 1966.
  • 17. LI S., POTTER C., HIATT C. Monitoring of Net Primary Production in California Rangelands Using Landsat and MODIS Satellite Remote Sensing. Natural Resources. 3(2), 56,2012.
  • 18. HEINSCH F.A., ZHAO M., RUNNING S.W., KIMBALL J.S., NEMANI R.R., DAVIS K.J., BOLSTAD P.V., COOK B.D., DESAI A.R., RICCIUTO D.M. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations IEEE Transactions on Geoscience & Remote Sensing. 44, 1908, 2006.
  • 19. ROWLAND L., HILL T.C., STAHL C., SIEBICKE L., BURBAN B., ZARAGOZACASTELLS J., PONTON S., BONAL D., MEIR P., WILLIAMS M. Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest Global Change Biology. 20, 979, 2014.
  • 20. DILLAWAY D.N., KRUGER E.L. Trends in seedling growth and carbon-use efficiency vary among broadleaf tree species along a latitudinal transect in eastern North America. Global Change Biolog. 20 (3), 908, 2014.
  • 21. GALINSKI W., KUPPERS M. Polish Forest Ecosystem - the Influence of Changes in the Economic-System on the Carbon Balance. Climatic Change. 27, 103, 1994.
  • 22. WU M., QIAN S., HOU Y., LI C., MAO L. Estimation of forage yield in Northern China based on NDVI data. Non-gye Gongcheng Xuebao/transactions of the Chinese Society of Agricultural Engineering. 25, 149, 2009.
  • 23. HEINSCH A.F., REEVES M., VOTAVA P., MILESI C., ZHAO M., GLASSY J., JOLLY W.M., BOWKER C.F., KIMBALL J.S. User’s Guide Version 2.0: GPP and NPP (MOD17A2/A3) Products, NASA MODIS Land Algorithm. 2003.
  • 24. LEHOUEROU H.N. Rain-Use Efficiency: a Unifying Concept in Arid-Land Ecology. Journal of Arid Environments. 7 (3), 213, 1984.
  • 25. MARTONNE E.D. Regions of Interior-Basin Drainage. Geographical Review. 17 (3), 397, 1927.
  • 26. SUN J., CHENG G.W., LI W.P. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences. 10 (3), 1707, 2013.
  • 27. MU S.J., LIJ.L., YANG H.F., GNAG C.C., CHEN Y.Z. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia.Acta Prataculturae Sinica. 2013.
  • 28. DU Y., GUO X., CAO G., LI Y. Increased Nitrous Oxide Emissions Resulting from Nitrogen Addition and Increased Precipitation in an Alpine Meadow Ecosystem. Polish Journal of Environmental Studies. 25 (1), 447, 2016.
  • 29. NASTOS P.T., POLITI N., KAPSOMENAKIS J. Spatial and temporal variability of the Aridity Index in Greece. Atmospheric Research. 119, 140, 2013.
  • 30. LI B., CHEN F. Using the aridity index to assess recent climate change: a case study of the Lancang River Basin, China. Stochastic Environmental Research and Risk Assessment. 29 (4), 1071, 2015.
  • 31. ZIERNICKA-WOJTASZEK A., ZAWORA T. Thermal Regions in Light of Contemporary Climate Change in Poland. Polish Journal of Environmental Studies. 20 (6), 1627, 2011.
  • 32. Qin X.J., Sun J., Liu M., Lu X.Y. The Impact of Climate Change and Human Activity on Net Primary Production in Tibet. Polish Journal of Environmental Studies. 25 (5), 2113, 2016.
  • 33. NI J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology. 174 (2), 217, 2004.
  • 34. XIA J.Y., MCGUIRE A.D., LAWRENCE D., BURKE E., CHEN G.S., CHEN X.D., DELIRE C., KOVEN C., MACDOUGALL A., PENG S.S., RINKE A., SAITO K., ZHANG W.X., ALKAMA R., BOHN T.J., CIAIS P., DECHARME B., GOUTTEVIN I., HAJIMA T., HAYES D.J., HUANG K., JI D.Y., KRINNER G., LETTENMAIER D.P., MILLER P.A., MOORE J.C., SMITH B., SUEYOSHI T., SHI Z., YAN L.M., LIANG J.Y., JIANG L.F., ZHANG Q., LUO Y.Q. Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research-Biogeosciences. 122 (2), 430, 2017.
  • 35. XIA J.Y., CHEN J.Q., PIAO S.L., CIAIS P., LUO Y.Q., WAN S.Q. Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience. 7 (3), 173, 2014.
  • 36. NATALI S.M., SCHUUR E.A.G., RUBIN R.L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology. 100(2), 488, 2012.
  • 37. ZHANG X.Q., YAMAGUCHI Y. Characterization and evaluation of MODIS-derived Drought Severity Index (DSI) for monitoring the 2009/2010 drought over south-western China. Natural Hazards. 74 (3), 2129, 2014.
  • 38. TANG X., FAN S., QI L., GUAN F., SU W., DU M. A comparison of soil respiration, carbon balance and root carbon use efficiency in two managed Moso bamboo forests in subtropical China. Annals of Forest Research. 59 (1), 3,2016.
  • 39. ZHANG Y.P., TAN Z.H., SONG Q.H., YU G.R., SUN X.M. Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest. Atmospheric Environment. 44 (32), 3886, 2010.
  • 40. TANG Y.K., CHEN Y.M., WEN X.F., SUN X.M., WU X., WANG H.M. Variation of carbon use efficiency over ten years in a subtropical coniferous plantation in southeast China. Ecological Engineering. 97, 196, 2016.
  • 41. CHEN Z., YU G., ZHU X., HU Z.M. Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agricultural & Forest Meteorology. 20 (203), 180, 2015.
  • 42. METCALFE D.B., MEIR P., ARAGAO L.E.O.C., LOBODO-VALE R., GALBRAITH D., FISHER R.A., CHAVES M.M., MAROCO J.P., COSTA A.C.L. DA., ALMEIDA S.S. DE., BRAGA A.P., GONCALVES P.H.L., ATHAYDES J.DE., COSTA M. DA., PORTELA T.T.B., OLIVEIRA A.A.R. DE., MALHI Y., WILLIAMS M. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytologist. 187 (3), 608, 2010.
  • 43. COSTA A.C.L.D., METCALFE D.B., DOUGHTY C.E., OLIVEIRA A.A.R.D., NETO G.F.C., COSTA M.C.D., JUNIOR J.D.A.S., ARAGÃO L.E.O.C., ALMEIDA S., GALBRAITH D.R. Ecosystem respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecology & Diversity. 7 (1-2), 7, 2014.
  • 44. GOWER S.T., KRANKINA O., OLSON R.J., APPS M., LINDER S., WANG C. net primary production and carbon allocation patterns of boreal forest ecosystems. Ecological Applications. 11 (5), 1395, 2001.
  • 45. SCHUUR E.A., MATSON P.A. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia. 128 (3), 431,2001.
  • 46. PIAO S.L., LUYSSAERT S., CIAIS P., JANSSENS I.A., CHEN A.P., CAO C., FANG J.Y., FRIEDLINGSTEIN P., LUO Y.Q., WANG S.P. Forest annual carbon cost: a globalscale analysis of autotrophic respiration. Ecology. 91(3), 652,2010.
  • 47. ZHONG L., MA Y.M., SALAMA M.S., SU Z.B. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Climatic Change. 103 (3-4), 519,2010.
  • 48. PARUELO J.M., LAUENROTH W.K., BURKE I.C., SALA O.E. Grassland Precipitation-Use Efficiency Varies Across a Resource Gradient. Ecosystems. 2 (1), 64,1999.
  • 49. YAN L.M., CHEN S.P., HUANG J.H., LIN G.H. Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe. Global Change Biology. 17 (5), 1990, 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-21ec267d-ccf9-4b8c-87b7-25a71057fabb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.