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ABSTRACT 
 

In this research work, a deterministic mathematical model for schistosomiasis transmission 

dynamics is presented. The model consists of five non-liniar ordinary differential equations 

incorporating the acute and chronic infectious compartments. The basic reproductive number, (the 

number of secondary infections when a single infectious individual is introduced into a population where 

everyone is susceptible) was obtained. Furthermore, we gained and analyzed for stability, the disease-

free and endemic equilibrium. The qualitative feature of the model shows that the long-term behavior 

of the model is independent of initial conditions. Numerical simulation of the various state variables 

were obtained using matlab software. 
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1.  INTRODUCTION 

 

Schistosomiasis is an acute and chronic parasitic disease caused by blood flukes 

(trematodes worms) of the genus Schistosomia [1]. Intestinal Schistosomiasis has five main 

species; Schistosoma mansoni, Schistosoma japonicum, Schistosoma mekongi, Schistosoma 

guineensis and S. intercalatum, which afflicts at least 243 million people world over [2], among 

which Schistosoma mansoni is the most prevalent in Africa [3]. Globally, Schistosomiasis 
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account for 200,000 deaths [4]. The risk of infection is highest amongst those who lived near 

lakes or rivers [5]. In Uganda, almost no transmission was found to have occurred at altitudes 

greater than 1400 m or where the annual rainfall was less than 900 mm [5]. 

Hygiene and playing in mud and water make children vulnerable to infection. Forty 

million women of childbearing age are infected [6] and approximately 10 million women in 

Africa have schistosomiasis during pregnancy [6]. 

In endemic areas, the infection is usually acquired as a child. The intensity and prevalence 

of infection rises with age and peaks usually between ages 15 and 20 years. In older adults, no 

significant change is found in the prevalence of disease, but the parasite burden or the intensity 

decreases [7]. 

Human beings become infected with schistosomiasis when larval forms of the parasite, 

released by freshwater snails, penetrate their skin during contact with infested water. In the 

body, the larvae develop into adult schistosomes. Adult worms live in the blood vessels, where 

the females release eggs. Some of the eggs are passed out of the body in the feces or urine to 

continue the parasite life cycle. Others can end up in the skin, brain, muscle, adrenal glands, 

and eyes. As the eggs penetrate the urinary system, they can find their way to the female genital 

region and form granulomas in the uterus, fallopian tube, and ovaries. Central nervous system 

(CNS) involvement occurs because of embolization of eggs from the portal mesenteric system 

to the brain and spinal cord via the paravertebral venous plexus [8, 9]. 

Acute schistosomiasis (Katayama syndrome) with incubation period of 14 – 84 days, is a 

systemic, serum sickness-like illness that develops after several weeks in some individuals with 

new schistosomal infections. It may correspond to the first cycle of egg deposition and is 

associated with marked peripheral eosinophilia and circulating immune complexes. It is most 

common with S. japonicum and S. mansoni infections and is most likely to occur in heavily 

infected individuals after primary infection. Chronic schistosomiasis, which is far more 

common than the acute form of the infection, results from egg-induced immune response, 

granuloma formation, and associated fibrotic changes. Chronic intestinal schistosomiasis can 

present with acute complications of appendicitis, perforation, and bleeding long after travel-

related (or endemic) exposure [10]. Rectal perforation caused by S. haematobium has also been 

described in a case report [11]. 

The use of mathematical model to combat the menace of schistosomiasis dated back to 

1982 when [12] developed a deterministic mathematical model to study the role of density-

dependent fecundity on population biology and dynamics of soil-transmitted helminthiases, in 

Particular ascariasis and hookworm infection. In [13], a deterministic model to study 

prevalence of intestinal schistosomiasis in human and snail was develpoed. The model also was 

used to evaluate possible control strategies, limitations and uncertainties.  [14], used stochastic 

model to investigate the role of immunity in observed patterns in endemic communities. 

Chemotherapy; vaccination; snail control; larval stage control; improved water and sanitation; 

health education effects on infection intensity in humans was studied by [15]. Deterministic 

model was developed by [16] to study infection intensity in humans and prevalence in snails. 

The findings reveals that infected snails suffer excess mortality and no reproduction. [17], 

developed a deterministic mathematical model to study the effect of time delay on mating 

structure.  

More recently, [18] developed a mathematical model of schistosomiasis transmission 

under flood in Anhui province. The delay of schistosomiasis outbreak under flood was 

considered. The impact of flood on the stability of the endemic equilibrium was studied and the 
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results imply that flood can destabilize the system and periodic solutions can arise by Hopf 

bifurcation. In [19] a mathematical model is defined to encompass two different delivery 

strategies for the vaccination of the population, namely, infant (cohort) and mass vaccination. 

The paper focused on vaccination delivered in a cohort immunisation programme where infants 

are immunised within the first year of life before acquiring infection. 

The major difference in this paper and the aforementioned ones is the inclusion of acute 

and chronic compartment. The paper also used the standard incidence (frequency dependent) 

as against mass action where it is assumed that the rate at which infection passes to the 

population is jointly proportional to the product of number of persons with infection and number 

susceptible to the infection. 

 

 

2.  MODEL FORMULATION 

 

The total human population 𝑁1 is divided into the following epidemiological classes; 

susceptible individuals (𝑆1), exposed individuals (i.e. who are infected but do not yet discharge 

schistosoma egg to the fresh water via their urine or faeces) )( 1E , acute (transient) infected 

individual ),( 1AI chronic infected individual )( 1CI , and recovered individual (𝑅1) such that

111111 RIIESN CA  . The total snail population 𝑁2  is divided into the following; 

susceptible snail(𝑆2), infected snail (i.e. snails that produce the parasitic fluke, cercariae which 

is passed unto human) )( 2I , such that .222 ISN   

The susceptible human population )( 1S  is generated by birth and immigration at a 

constant rate 1 . It is reduced by natural death at the rate 1 , and as members acquire the 

schistosoma parasites at the rate .1  The exposed human population is generated upon a 

successful contact with cercariae at the rate ,1 and is decreased as the cercariae who survival 

the first 2 – 4 weeks takes the affected individual to infected stage at the rate 1   and by natural 

death at the rate 1 . The acute infection population is generated as exposed individuals begin to 

show symptoms and discharge the schistosoma egg in fresh water at the rate 1 . It is decreased 

as members recover at the rate of ,1 progress to chronic infection at the rate ,2  die naturally 

at the rate 1  or due to the infection at the rate .1  The chronic infection population is generated 

as acute infected individuals lasts for months and years without  treatment at the rate .2  It is 

decreased as members recover from the infection at the rate ,2  die naturally at the rate 1  or 

due to the infection at the rate .1  The recovered individual is generated as acute and chronic 

infected individuals recover at the rate of  1  and .2  It is in turn decreased by loss of immunity 

and natural death at the rate 1 . 

The susceptible snail population )( 2S , is generated at a constant rate .1 It is decreased as 

its members come in contact with cercariae discharged by acute and chronic infected 

individuals at the rates 2  and 3 ,  and by natural death  .2  The infected snail population is 
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generated by successful contact with the eggs introduced into  their habitat by the acute and 

chronic infected human at the rate  2 and .3  It is reduced by natural death at the rate .2   

Form the above, we come up with the following differential equation to represent the 

dynamics of schistosomiasis within human and snail population. 
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Basic Properties 

In this section, the basic dynamical features of the model (1) will be explored. We 

Claim the following: 

 

Lemma 1 
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is positively invariant and attracting with respect to the basic model equations (1).  

 

Proof 

Adding equations four equations of (1) gives; 
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Also, adding the last two equations of (1) gives; 
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in finite time or approaches
1
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2

2


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and the infected variables 

CA IIE 111 ,, approaches zero. Hence, all solutions 
7

R  eventually enters D . Thus in D , the basic 

model (1) is well posed epidemiologically and mathematically [21]. Hence, it is sufficient to 

study the dynamics of the model equations in D . 

 

Lemma 2. Let the initial data ,0)0( F  where .,,,,,,()( 2211111 ISRIIEStF CA Then the 

solution )(tF of the schistosomiasis model (1) are non- negative for all .0t  Furthermore 

form (2) and (3), 
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which can be written as follows  
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Similarly, it can be shown that 0F , for all 0t .  

For the second part of the proof, note that 
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Local stability of Disease free equilibrium (DFE) 

Disease free equilibrium is equilibrium where there is no infection. Therefore, the 

infected classes will be zero that means that the whole population will be susceptible. To find 

the disease free equilibrium )( 0E of our model equations (1), we equate the rate of change of 

our state variables to zero i.e. 
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 Solving the resulting algebra equations we have: 
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The linear stability of 0E  can be established using the next generation Matrix operator 

method on the system (I). Using the notation in [22], the matrices F and V  for the new 

infection terms and the remaining transfer terms, are, respectively, given by: 

 



























00

0000

0000

000

2

*

22

2

*

21

1

*

13

N

S

N

S

N

S

F





,       (5) 

 































2

112

1121

1

*

13

11

000

0)(0

00)(

00)(










N

S

V    (7) 

 

 

for  

 

.,),(

),(),(,

27615114

112311211









KKKK

KKK
     (8) 

 

 



World News of Natural Sciences 23 (2019) 276-296 

 
 

-283- 





































7

443

2

432

332

1

2

1
000

0
11

00
1

000
1

K

KKKKKK

KKK

K

V




,      (9) 

 






























0

0000

0000

000

42

*

22

432

*

222

32

*

21

4322

*

22

322

*

211

71

*

13

KN

S

KKN

S

KN

S

KKKN

S

KKN

S

KN

S

VF





,  (10) 

 

Here, the basic reproductive number 0  is the spectral radius (dominant eigenvalue) of 

the product matrix , hence model (1) has: 
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Theorem 1  

The disease free equilibrium of the schistosomiasis model (1) is locally asymptotically 

stable when 10   and unstable when .10   

 

Proof  

The local stability of the disease free equilibrium is a direct consequence of [22] and 

shows that the model equations (1) to (7) satisfies five assumptions 51 AA   in [22], and that 

ends the proof. 

 

Theorem 2  

The disease free equilibrium of the schistosomiasis model (1) is globally asymptotically 

stable when 10   and unstable when 10   

 

Proof  

For the prove of the globally asymptotic stability of DFE of model (1), we use the 

comparison theorem in [20, 24] p.31. To apply this theorem we re-write the equations for the 

infected compartments in (1) as follows: 
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where F and V are as defined in (5) and (7). Further, since
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Since the eigenvalues of the matrix )( VF  have negative real parts as in Lemma 1 of 
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Endemic equilibrium state/stability 

This is an equilibrium state where at least one of the infected compartments is non-zero. 

In order to find the Endemic equilibrium for our model equations (1) to (7), the following steps 

are taken. We let  **

2

**

2

**

1

**

1

**

1

**

1

**

11 ,,,,,, ISRIIESE CA  represent any arbitrary point of the 

endemic equilibrium of our model equations (1) to (7), further, let; we let  

 

.,,
**

2

**

12

**

11

2**

1

**

23**

1
N

II

N

I CA 






       (14) 

 

Substituting (8) and (14) into the right hand side of (1) and equating to zero, we have 

 

,0**

11

**

1

**

11  SKS  

 

,0**

12

**

1

**

1  EKS  

 

,0**

13

**

11  AIKE  
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,0**

14

*

12  CA IKI     (15) 

 

,0**

15

**

11

**

11  RKII CA    

 

,0**

26

**

2

**

22  SKS  

 

.0**
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**

2

**

2  IKS  

 

Solving (15) we have: 
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1
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






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






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  (16) 

 

Substituting (16) into (14) and solving, we have: 

 

,)( 1

**

11

2**

11

**

1 cba          (17)   

 

where  

  
 .)((

,)()(

,

221412231
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2

1

**

22214111

**

11

6431

**

21






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

Kc

KKKKNKKNb

KKKKNa

   (18) 

 

It can be seen that the coefficient 1a of (17) is always positive while 1c  is positive which 

occurs only when 0  is less than unity and negative if 0  is greater than unity. Thus the 

following result is claimed.  

 

Theorem 

The basic model given by (1) is characterized by 

(i) one unique endemic equilibrium if  ,01 b and 01 c or ,04)( 11

2

1  cab  

(ii) one unique endemic equilibrium if ,10 01 c  

(iii) two endemic equilibrium if 0)(,0 2

11  bc  and ,04)( 11

2

1  cab  

(iv) no endemic equilibrium otherwise. 
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Case (iii) above suggest the possibility of backward bifurcation where local stability of 

DFE co-exist with endemic equilibrium even when 10  . This prompted the bifurcation 

analysis. 

 

Local stability of Endemic Equilibrium and Bifurcation analysis 

Theorem The endemic equilibrium of model (1) is locally asymptotically stable when  

0022  ccc  
 

where 2c , ,1c and 0c  are given in the proof of the theorem. 

 

Proof 

The variational matrix, **M  corresponding to the endemic equilibrium point is given by 
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To prove that the endemic equilibrium (16) of the model (1) is locally asymptotically 

stable, we perform bifurcation analysis at the DFE using the Centre Manifold theorem as 

described in [23], and given in appendix A. 

In order to apply this theorem, we first make the following change of variables. Let  

 

7262514131,2111 ,,,,, xIxSxRxIxIxExS CA  , so that  

 

543,211 xxxxxN    

 

and 762 xxN  , such that 7621 xxNNN x   further, using the vector notation, 

 
TxxxxxxxX ),,,,,( 76543,21 . 

 

Then our model equations (1) to (7) can be written in the form  
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Tfffffff
dt

dx
),,,,,,( 76543,21 , such that: 

 

77
642631

7
7

66
642631

16
6

5542315

5

44324
4

33213
3

22
713

2
2

11

713

11
1

xk
N

xxxx
f

dt

dx

xk
N

xxxx
f

dt

dx

xkxxf
dt

dx

xkxf
dt

dx

xkxf
dt

dx

xk
N

xx
f

dt

dx

xk
N

xx
f

dt

dx

x

x

x

x










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
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







  (19) 

 

Suppose that 
*

33   is taken as the bifurcation parameter, and considering where the 

basic reproductive number 10  , and
*

33   0 , in (11). Then linearizing (19) at DFE point 

0E  when 
*

33   gives the Jacobia *

0J which has a trivial zero eigenvalues, while the rest 

eigenvalues has negative real part. 
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   (20) 

  

The Jacobia *

0J (20) evaluated 
*

33   has right eigenvector associated with the trivial 

eigenvalues given by  

 

 Twwwwwwww 7654321 ,,,,,, , such that: 
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Solving (21), we have; 
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Similarly the left eigenvalues of *

0J evaluated at 
*

33   corresponding to the trivial 

eigenvalue is  7654321 ,,,,,, vvvvvvvv  . Such that: 



World News of Natural Sciences 23 (2019) 276-296 

 
 

-289- 




































.0

,0

,0

,0

,0

,0

,0

772*

3

1*

3

66

55

7*

2
6*

2
5244

7*

1
6*

1
514233

3122

11

vKv
N

v
N

vK

vK

v
N

v
N

vvK

v
N

v
N

vvvK

vvK

vK

xx

xx

xx











                      (23) 

 

By solving (23), we have; 

 

.

,0

,0

,
)(

,

,

,0

72

*

313
7

6

5

742

2*

3132

4

33

2

31

2

1

KKN

v
v

v

v

KKKN

v
v

vv

K

v
v

v

x

x





















 

 

Computation of a  and b   

We consider 2k and 7 , that is, the following functions will be used to find a  and b  

from the system. 
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but at DFE,
*

6

*

1

* xxNx  . 

Hence, the associated non-zero partial of f  at the DFE for  72 , fff   are given by; 
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Therefore 
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As a corollary to the above when ,0,0  ba  the bifurcation at 0 is subcritical 

(backward bifurcation). 

 

Numerical simulation 

In this section we carried out numerical simulation of the model using the parameter 

values provided in Table 1. 

 

Parameter and their meaning Value Reference 

1 - Recruitment rate of susceptible human population. 100  ]25[  

2 - Recruitment rate of susceptible snail population. 200  ]25[  

1 - Natural death rate of human. 0004.0  ]26[  

2 - Natural death rate of snail. 000056.0  ]27[  

1 - Transmission rate from acute infected individual to snail. 004.0  ]27[  

2 - Transmission rate from chronic infected individual snail. 0046.0  Assumed 

3 - Transmission rate from infected snail to susceptible human 046.0  ]27[  
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1 - Recovery rate of acute infected individual. 05.0  ]28[  

2 - Recovery rate of chronic infected individual. 06.0  Assumed 

1 - Progression rate from exposed to acute infection. 2.0  Assumed 

2 - Progression rate from acute to chronic infection 03.0  Assumed 

 - Schistosomiasis induced death rate. 0039.0  ]29[  

 

 
 

Figure 1. Simulation of some compartments with time. Figure 1 (A) is the simulation of 

susceptible human population with time. The figure indicates an initial increase in the 

population, then a decrease in the population due to the infection and natural death. Figure 1(B) 

is the simulation of exposed human population, the figure shows that the population is been 

depleted due to graduation to acute population and natural death. Figure 1©, simulation of 

recovered human population, the figure shows initial increase in the population due to 

treatment. Figure 1(D), simulation of susceptible snail population, this figure show a steady 

increase in the population.  
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Figure 2. Simulation of the acute infected population with time. 

 

 
 

Figure 3. Simulation of the chronic infected population with different initial conditions 
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3.  CONCLUSIONS 

 

A schistosomisis transmission model within human and snail population was developed 

using standard incidence approach and analyzed. The disease free and endemic equilibria were 

obtained and analyzed for both local and global asymptotically stability. The analysis shows 

that the model undergoes backward bifurcation when the effective basic reproductive number

1R .  

The following results were obtained: 
 

(i) The model reveals that at for certain small initial condition the disease will persist in 

the population (see Figure 2) which is rather unexpected result. This is however in line 

with the bifurcation result. 

(ii) The simulation of the model suggests the need to carry out routine treatment in 

endemic areas since the long incubation period was obvious as symptoms did not 

manifest until after some weeks (see Figures 2 and 3). 

(iii) The snail population figure 1, exhibits a kind of linear property which suggest that the 

population cannot go extinct. In other words control and eradication can will be 

guaranteed by provision of portable water for domestic purposes, avoidance of infected 

water bodies and sustained regular treatment. 

(iv) The bifurcation analysis indicates that the model undergoes subcritical (backward 

bifurcation). When the associated basic reproductive number is less than one. 
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Appendix A 
 

 

Consider the following general system of ordinary differential equations with a parameter

 . 

 

nn RRRxf
dt

dx
 :),(  and )(2 RRCf n    (24) 

 

where 0 is an equilibrium point of the system (that is, 0),0( f  for all ) and  
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fDA is the linearization matrix of the system (24) around the 

equilibrium 0 with   evaluated at 0; 

 

(A2) Zero is a simple eigenvalues of A and other eigenvalues of A have negative real parts; 

 

(A3) Matrix A has a right eigenvector w  and left eigenvector v  (each corresponding to zero 

eigenvalues).  

Let kf be the kth  component of f  and: 
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then, the local dynamics of the system (24) around equilibrium point 0 is totally determined by 

the signs of a and b, particularly, 

(i) ,0,0  ba when 0 with 1  0 is locally asymptotically stable and there exists 

a positive unstable equilibrium; when 10   , 0 is unstable and there exists a negative, 

locally asymptotically stable equilibrium; 
 

(ii) ,0,0  ba when 0 with 1 , 0 is unstable; when 10   , 0 is locally 

asymptotically stable equilibrium and there exists a positive unstable equilibrium; 

(iii)   ,0,0  ba  when   changes from negative to positive, 0 changes its stability from 

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and 

locally asymptotically stable 

 


