Warianty tytułu
Języki publikacji
Abstrakty
Studies on nutritional regulation of digestive enzymes in ruminants are scarce. Fat supplementation of diets for dairy cows changes the supply of nutrients for absorption and transport. The aim of this experiment was to study the effect of the physical form of rapeseed (Brassica napus) fat on the duodenal enzyme profile in dairy cows. Four mid-lactation Danish Holstein dairy cows were submitted to an experiment with a 4 × 4 Latin square design and fed four rations containing 50% forage and 50% concentrate on a dry matter basis. The four rations were: a control ration with rapeseed meal (low fat) and three fat-supplemented rations with either rapeseed cake (RSC), whole cracked rape seed (WCR), or rapeseed oil (RSO). The correlation coefficients among duodenal enzyme activities and the relationship between α-amylase and protease activities were examined. Diurnal samples were taken from the duodenum, frozen immediately and stored frozen (–20°C) before analyses. Additional fat increased the soluble protein content in duodenal chyme (P < 0.05). Neither α-amylase nor the protease or soluble sugar concentrations were affected by the treatments. Lipase activity increased for RSO compared with the control. The relationship between α-amylase and protease activities showed a parabolic behaviour (r = 0.77; P = 0.061). In conclusion, inclusion of rapeseed oil in the ration of dairy cows under the experimental conditions increased the soluble protein concentration and lipase activity in duodenal chyme
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.293-298,fig.,ref.
Twórcy
autor
- Agricultural College, Animal Science Department, Shahrekord University, P.O. Box 115, Shahrekord, Iran
autor
- Department of Animal Science, Aarhus University, Foulum, DK-8830 Tjele, Denmark
autor
- Department of Animal Science, Aarhus University, Foulum, DK-8830 Tjele, Denmark
Bibliografia
- Babkin B.P., 1950. Secretory Mechanisms of the Digestive Glands. 2nd Edition. Hoeber, New York, pp. 54–58
- Blackburn T.H., 1968. Protease production by Bacteroides amylophilus strain H18. J. Gen. Microbiol. 53, 27–36
- Brannon P.M., 1990. Adaptation of the exocrine pancreas to diet. Annu. Rev. Nutr. 10, 85–105
- Brask M., Lund P., Weisbjerg M.R., Hellwing L.F., Poulsen M., Larsen M.K., Hvelplund T., 2013. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows. J. Dairy Sci. 96, 2356–2365
- Chittenden L., Johnson W., Mitchell D.D. Jr. G.E., Tucker R.B., 1984. Ovine pancreatic amylase response to form of carbohydrate. Nutr. Rep. Int. 29, 1051–1060
- Doreau M., Chilliard Y., 1997. Digestion and metabolism of dietary fat in farm animals. Brit. J. Nutr. 78, S15–S35
- Doreau M., Ferlay A., 1994. Digestion and utilization of fatty-acids by ruminants. Anim. Feed Sci. Tech. 45, 379–396
- Enjalbert F., Eynard P., Nicot M.C., Troegeler-Meynadier A., Bayourthe C., Moncoulon R., 2003. In vitro versus in situ ruminal biohydrogenation of unsaturated fatty acids from a raw or extruded mixture of ground canola seed/canola meal. J. Dairy Sci. 86, 351–359
- Figarella C., Clemente F., Guy O., 1969. On zymogens of human pancreatic juice. FEBS Lett. 3, 351–353
- Grossman M.I., 1958. Some properties of trypsin inhibitor of pancreatic juice. Proc. Soc. Exp. Biol. Med. 99, 304–306
- Hedqvist H., Uden P., 2006. Measurement of soluble protein degradation in the rumen. Anim. Feed Sci. Tech. 126, 1–21
- Huntington G.B., 1997. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 75, 852–867
- Ikwuegbu O.A., Sutton J.D., 1982. The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Brit. J. Nutr. 48, 365–370
- Jenkins T.C., 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76, 3851–3863
- Johnson T.O., 1973. Ovine and avian pancreatic lipase response to source and level of dietary fat. MSc. Thesis, University of Kentucky, Lexington, KY (USA)
- Kalser M.H., Grossman M.I., 1955. Secretion of trypsin inhibitor in pancreatic juice. Gastroenterology 29, 35–45
- Lahaie R.G., 1984. Dietary regulation of protein synthesis in the exocrine pancreas. J. Pediat. Gastroenterol. Nutr. 3, S43–S50
- Lowry O.H., Rosebrough J.J., Farr A.L., Randall R.J., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275
- Magee D.F., Hong S.S., 1959. Daily output of pancreatic juice and some dietary factors which influence it. Amer. J. Physiol. 197, 27–30
- McDonald P., Edwards R.A., Greenhalgh J.F.D., Morgan C.A., Sinclair L.A., Wilkinson R.G., 2011. Animal Nutrition. 7th Edition. Prentice Hall Publisher
- Moharrery A., Das T.K., 2001. Correlation between microbial enzyme activities in the rumen fluid of sheep under different treatments. Reprod. Nutr. Dev. 41, 513–529
- Moharrery A. Larsen M., Weisbjerg M.R., 2014. Starch digestion in the rumen, small intestine, and hind gut of dairy cows – A meta-analysis. Anim. Feed Sci. Tech. 192, 1–14
- Moore J.H., Christie W.W., 1984. Digestion, absorption and transport of fats in ruminant animals. In: J. Wiseman (Editor). Fats in Animal Nutrition. Butterworths, London (UK), pp. 123–149
- Noble R.C., 1978. Digestion, absorption and transport of lipids in ruminant animals. Prog. Lipid Res. 17, 55–91
- NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th revised Edition. National Academy Press.Washington, DC
- Oser B.L., 1965. Hawk’s Physiological Chemistry. 14th Edition. TATA McGraw-hill Publishing Co. LTD. New Delhi, pp. 1123
- Owens F.N., Bergen W.G., 1983. Nitrogen metabolism of ruminant animals: Historical perspective, current understanding and future implications. J. Anim. Sci. 57, Suppl. 2, 498 (Abstr.)
- Owens F.N., Zinn R.A., Kim Y.K., 1986. Limits to starch digestion in the ruminant small intestine. J. Anim. Sci. 63, 1634–1648
- Ørskov E.R., McDonald I., 1979. The estimation of protein degradation in the rumen from incubation measurements weighted according to rate of passage. J. Agr. Sci. 92, 499–503
- Reynal S.M., Ipharraguerre I.R, Lineiro M., Brito A.F., Broderick G.A., Clark J.H., 2007. Omasal flow of soluble protein, peptides, and free amino acids in dairy cows fed diets supplemented with proteins of varying ruminal degradabilities. J. Dairy Sci. 90, 1887–1903
- Richards C.J., Swanson K.C., Paton S.J., Harmon D.L., Huntington G.B., 2003. Pancreatic exocrine secretion in steers infused postruminally with casein and corn starch. J. Anim. Sci. 81,1051–1056
- Ricketts J., Brannon P.M., 1992. Preferential regulation of pancreatic lipase by polyunsaturated dietary fat. Fed. Amer. Soc. Exp. Biol. J. 6, A1841 (Abstr.)
- Romo G.A., Erdman R.A., Teter B.B., Sampugna J., Casper D.P., 2000. Milk composition and apparent digestibilities of dietary fatty acids in lactating dairy cows abomasally infused with cis or trans fatty acids. J. Dairy Sci. 83, 2609–2619
- SAS, 2009. User’s Guide: Statistics, Version 9.2. SAS Institute Inc. Cary, NC
- Stefański T., Ahvenjärvi S., Huhtanen P., Shingfield K.J., 2013. Metabolism of soluble rapeseed meal (Brassica rapa L.) protein during incubations with buffered bovine rumen contents in vitro. J. Dairy Sci. 96, 440–450
- Swanson K.C., Harmon D.L., 2002. Dietary influences on pancreatic alpha-amylase expression and secretion in ruminants. In: R. Zabielski, P.C. Gregory, B. Weström (Editors). Biology of the Intestine in Growing Animals. Elsevier Science, New York, pp. 515–537
- Volden H., Mydland L.T., Olaisen V., 2002. Apparent ruminal degradation and rumen escape of soluble nitrogen fractions in grass and grass silage administered intraruminally to lactating dairy cows. J. Anim. Sci. 80, 2704–2716
- Wormsley K.G., Goldberg D.M., 1972. The interrelationships of the pancreatic enzymes. Gut 13, 398–412
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1c5139c7-fe35-46e7-b46d-e2b4230394a6