Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
This study intended to provide biopolymer films used as food packaging, which will result in reducing environmental pollution produced by the activities of synthetic food packaging. We used zinc oxide nanorods (ZnO-nr) and we prepared nanocomposite films by means of solvent casting. FTIR and SEM were employed to characterize the final films. SEM images revealed that ZnO-nr particles were homogenously distributed throughout the film surface. The thermal, optical, and heat sealability properties of the films were also examined. Adding ZnO-nr signifi cantly reduced oxygen permeability and heat sealability. The semolina films’ UV absorbance was highly impacted by the degree of ZnO-nr addition. The nanocomposite films absorbed above 90% of the near infrared spectra. In addition, the zeta potential revealed the surface charge of ZnO-nr had a negative charge of about -33.9 mV
Słowa kluczowe
Wydawca
Rocznik
Tom
Numer
Opis fizyczny
p.183-190,fig.,ref.
Twórcy
autor
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, University Sains Malaysia, 11800 Minden, Penang, Malaysia
autor
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, University Sains Malaysia, 11800 Minden, Penang, Malaysia
autor
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, School of Industrial Technology, University Sains Malaysia, 11800 Minden, Penang, Malaysia
autor
- Nano Optoelectronic Research (NOR) Lab, School of Physics, University Sains Malaysia, 11800 Minden, Penang, Malaysia
Bibliografia
- 1. Abdorreza M.N., Cheng L.H., Karim A.A., Effects of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloid., 2011, 25, 56–60.
- 2. Arfat Y.A., Benjakul S., Prodpran T., Sumpavapol P., Songtipya P., Properties and antimicrobial activity of fi sh protein isolate/ fi sh skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloid., 2014, 41, 265–273.
- 3. ASTM., Annual Book of ASTM Standards. 2005, Philadelphia, PA.
- 4. ASTM., Standard Test Method for Seal Strength of Flexible Barrier MaterialsF88/F88M-09, Philadelphia, PA, 2009, Annual book of ASTM Standards.
- 5. Bae H.J., Park H.J., Hong S.I., Byun Y.J., Darby D.O., Kimmel R.M., Whiteside W.S., Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fi sh gelatin/montmorillonite nanocomposite films. LWT – Food Sci. Technol., 2009, 42, 1179–1186.
- 6. Bourtoom T., Chinnan M.S., Preparation and properties of rice starch–chitosan blend biodegradable film. LWT – Food Sci. Technol., 2008, 41, 1633–1641.
- 7. Djaja N. F., Montja D. A., Saleh R., The effect of Co incorporation into Zno nanoparticles. Adv. Material. Physc. Chem., 2013, 3, 33–41.
- 8. Dufresne A., Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J. Nano Sci. Nano Techno., 2006, 6, 322–330.
- 9. Gennadios A., Edible films and coatings from proteins. 2004, in: Proteins in Food Processing (ed. R. Yada). Wood Head Publishing, Cambridge, UK, pp. 467–489.
- 10. Hong S.I., Krochta J.M., Oxygen barrier properties of whey protein isolate coatings on polypropylene films. J. Food Sci., 2003, 68, 224–228.
- 11. Jafarzadeh S., Alias A.K., Ariffin F., Mahmud S., Najafi A., Preparation and characterization of bionanocomposite films reinforced with nano kaolin. J. Food Sci. Technol., 2016, 53, 1111–1119.
- 12. Khwaldia K., ArabTehrany E., Desobry S., Biopolymer coatings on paper packaging materials. Compreh. Rev. Food Sci. Food Safety, 2010, 9, 82–91.
- 13. Kovacevic E., Stefanovic I., Berndt J., Godde C., Winter J., Boufendi L., The nanoparticle formation in hydrocarbon plasmas. Publ. Astronom. Observ. Belgrade, 2008, 84, 151–152
- 14. Kumar A.P., Singh R.P., Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking. Biores. Technol., 2008, 99, 8803–8809.
- 15. Li J.H., Hong R.Y., Li M.Y., Li H.Z., Zheng Y., Ding J., Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat., 2009, 64, 504–509.
- 16. Li X.H., Xing Y.G., Li W.L., Jiang Y.H., Ding Y.L., Antibacterial and physical properties of poly (vinyl chloride)-based film coated with ZnO nanoparticles. Food Sci. Technol. Int., 2010, 16, 225–232.
- 17. Lin O.H., Akil H.M., Mahmud S. Effect of particle morphology on the properties of nanoZnO/polypropylene composites. Adv. Compos Lett., 2009, 18, 77–83.
- 18. Mahmud S., Abdullah M.J., Tapered head of Zinc Oxide nanorods. Solid State Sci. Technol., 2007, 15, 1, 108–115.
- 19. Marcuzzo E., Sensidoni A., Debeaufort F., Voilley A., Encapsulation of aroma compounds in biopolymeric emulsion based edible films to control fl avour release. Carbohydr. Polym., 2010, 80, 984–988.
- 20. Nuthong P., Benjakul S., Prodpran T., Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. Int. J. Biol. Macromol., 2009, 44, 143–148.
- 21. Onyeneho S.N., Hettiarachchy N.S., Antioxidant activity of durum wheat bran. J. Agr. Food Chem., 1992, 40, 1496–1500.
- 22. Padua G.W., Wang Q., Formation and properties of corn zein films and coatings. 2002, in: Protein Based Films and Coatings (ed. A. Gennadios). CRC Press, USA, pp. 43–68.
- 23. Petersson L., Oksman K., Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Technol., 2006, 66, 2187–2196.
- 24. Quaglia G.B., Other durum wheat products. 1988, in: Durum Chemistry and Technology (eds. M.J. Sissones, J. Abecassis, B. Marchylo, M. Carcea). AACC International, St. Paul, M.N., pp. 263–282.
- 25. Rajendran R., Balakumar C., Ahammed H.A.M., Jayakumar S., Vaideki K., Rajesh E., Use of zinc oxide nano particles for production of antimicrobial textiles. Int. J. Eng. Sci. Technol., 2010, 2, 202–208.
- 26. Ramos Ó.L., Reinas I., Silva S.I., Fernandes J.C., Cerqueira M.A., Pereira R.N., Vicente A.A., Poças M.F., Pintado M.E., Malcata F.X., Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured there from. Food Hydrocolloid., 2013, 30(1), 110–122.
- 27. Sanchez-Garcia M.D., Gimenez E., Lagaron J.M., Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fi bers. Carbohydr. Polym., 2008, 71, 235–244.
- 28. Sothornvit R., Rhim J.W., Hong S.I. Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/ clay composite films. J. Food Eng., 2009, 91,468 473.
- 29. Subramani C., Mhaske S.T., Kathe A.A., Varadarajan P.V., Prasad V., Vignesh-Waran N., Functional behaviour of polypropylene/ZnO-soluble starch nanocomposites. Nanotechnology, 2007, 18(38), 385702.
- 30. Tharanathan R.N., Biodegradable films and composite coatings: past, present and future. Trends Food Sci. Technol., 2003, 14, 71–78.
- 31. Türe H., Gällstedt M., Johansson E., Hedenqvist M.S., Wheat- -gluten/montmorillonite clay multilayer-coated paperboards with high barrier properties. Ind. Crop Prod., 2013, 51, 1–6. 32. Wittaya T., Protein-based edible films: characteristics and improvement of properties. 2012, in: Structure and Foundation of Food Engineering (ed. A.A. Eissa). InTech, Rijeka, Croatia, pp. 43–70.
- 33. Yu D., Cai R., Liu Z., Studies on the photo degradation of Rhodamine dyes on nanometer-sized zinc oxide. Spectrochim Acta A., 2004, 60, 1617–1624.
- 34. Yu J., Yang J., Liu B., Ma X., Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Biores. Technol., 2009, 100, 2832– 2841.
- 35. Zhang L., Ding Y., Povey M., York D., ZnO nanofluids–A potential antibacterial agent. Prog. Nat. Sci. Mat. Int., 2008, 18(8), 939–944.
- 36. Zou D.Q., Yoshida H., Size effect of silica nanoparticles on thermal decomposition of PMMA. J. Therm. Anal. Calorim., 2010, 99, 21–26.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1b4c58a0-32d5-42e1-bf06-36a0a0b0ba85