Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |
Tytuł artykułu

Modulation of photosynthesis, phenolic contents, antioxidant activities, and grain yield of two barley accessions grown under deficit irrigation with saline water in an Arid area of Tunisia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of irrigation with saline water were studied on barley plants cultivated under arid conditions at the Institute of Arid Regions located in the South East of Tunisia. Two barley accessions (Karkeni and Bengardeni) and three regimes of irrigation as a function of the cultural evapotranspiration ETc (T0: 100% ETc, T1: 75% ETc and T2: 50% ETc) were used. Several parameters – gas exchange (A, E and gs), total flavonoid contents (TFC), total phenolic contents (TPC), phenolic compounds, antioxidant activity (DPPH and ABTS) and grain yield (GY) – were used to assess the effects of the studied factors on barley plants. Gas exchange parameters (A, E and gs) vary significantly between treatments. Salinity stress had no significant effect on TPC and TFC. Phenolic compounds varied significantly between treatments and accessions. In addition, their antioxidant activity based on DPPH and ABTS scavenging assays increased and are more important in Karkeni than Bengardeni under soil salinity. In addition, soil salinity decreased yield and yield components. Karkeni was more productive than Bengardeni.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
28
Numer
5
Opis fizyczny
p.3071-3080,fig.,ref.
Twórcy
autor
  • Laboratoire d’Aridocultures et Cultures Oasiennes, Institut des Regions Arides, Medenine, Tunisie
  • Faculte des Sciences de Sfax, Sfax, Tunisie
autor
  • Laboratoire des Plantes Extremophiles, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
autor
  • Laboratoire d’Aridocultures et Cultures Oasiennes, Institut des Regions Arides, Medenine, Tunisie
autor
  • Laboratoire d’Aridocultures et Cultures Oasiennes, Institut des Regions Arides, Medenine, Tunisie
autor
  • Laboratoire d’Aridocultures et Cultures Oasiennes, Institut des Regions Arides, Medenine, Tunisie
autor
  • Laboratoire d’Aridocultures et Cultures Oasiennes, Institut des Regions Arides, Medenine, Tunisie
Bibliografia
  • 1. MOSTEK A., BORNER A., BADOWIEC A., WEIDNER S. Alterations in root proteome ofsalt-sensitive and tolerant barley lines under salt stress conditions. J Plant Physiol 174, 166, 2015.
  • 2. PESSARAKLI M., SZABOLCS I. Handbook of Plant and Crop Stress, Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors. Third edition. CRC Press Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL. 33487-2742. USA, 2011.
  • 3. ROY S.J., NEGRAO S., TESTER M. Salt resistant crop plants. Current Opinion in Biotechnology 26, 115, 2014.
  • 4. MACHADO R.M.A., SERRALHEIRO R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 3 (30), doi: 10.3390/horticulturae3020030, 2017.
  • 5. SHAHBAZ M., ASHRAF M. Improving Salinity Tolerance in Cereals. Critical Reviews in Plant Sciences 32, 237, 2013.
  • 6. NEGRAO S., SCHMOCKEL S.M., TESTER M. Evaluating physiological responses of plants to salinity stress. Ann Bot 119 (1), 1, 2017.
  • 7. REDDY I.N.B.L., KIM B.K, YOON I.S., KIM K.H., KWON T.R. Salt Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Science 24 (3), 123, 2017.
  • 8. KATERJI N., VAN HOORN J.W., HAMDY A., MASTRORILLI M., C. FARES C., CECCARELLI S. GRANDO S., OWEIS T. Classification and salt tolerance analysis of barley varieties. Agricultural Water Management 85 (1), 184, 2006.
  • 9. NAHAR K., HASANUZZAMAN M., RAHMAN A., MAHABUB ALAM M.D., AL MAHMUD J., SUZUKI T., FUJITA M.Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems. Front. Plant Sci 28 July, doi.org/10.3389/fpls.2016.01104, 2016.
  • 10. KHAN M.S.A., KARIM M.A., HAQUE M.M., ISLAM M.M., KARIM A.J.M.S., MIAN M.A.K. Influence of Salt and Water Stress on Growth and Yield of Soybean Genotypes. Pertanika J. Trop. Agric. Sci 39 (2), 167, 2016.
  • 11. SLAMA I., GHNAYA T., HESSINI K., MESSEDI D., SAVOURE A., ABDELLY C. Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environmental and Experimental Botany 61, 10, 2007.
  • 12. SLAMA I., GHNAYA T., SAVOURE A., ABDELLY C. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C. R. Biologies 331, 442, 2008.
  • 13. PANDEY P., IRULAPPAN V., BAGAVATHIANNAN M.V., SENTHIL-KUMAR M. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Front. Plant Sci 8, 537, 2017.
  • 14. CRUZ J.L., FILHO M.A.C., COELHO E.F., DOS-SANTOS A.A. Salinity reduces carbon assimilation and the harvest index of cassava plants (Manihot esculenta Crantz). Acta Scientiarum. Agronomy, Maringá 39 (4), 545, 2017.
  • 15. HUANG C., WEI G., JIE Y., WANG L., ZHOU H., RAN C., HUANG Z., JIA H., ANJUM S.A. Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie. Plant Physiol. Biochem 76, 86, 2014.
  • 16. HAFSI C., FALLEH H., SAADA M., KSOURI R., ABDELLY C. Potassium deficiency alters growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa grown under moderate salinity, Plant Physiology and Biochemistry. doi: 10.1016/j.plaphy.2017.08.002, 2017.
  • 17. ROACH T., KRIEGER-LISZKAY A.K. Regulation of Photosynthetic Electron Transport and Photoinhibition. Curr Protein Pept Sci 15 (4), 351, 2014.
  • 18. DAS K., ROYCHOUDHURY A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 02 December 2014, doi.org/10.3389/fenvs.2014.00053.
  • 19. GEORGIEV V., ANANGA A., TSOLOVA V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 6 (1), 391, 2014.
  • 20. SKROVANKOVA S., SUMCZYNSKI D., MLCEK J., JURIKOVA T., SOCHOR J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int J Mol Sci 16 (10), 24673, 2015.
  • 21. BHARTI K., PANDEY N., SHANKHDHAR D., SRIVASTAVA P.C., SHANKHDHAR S.C. Effect of different zinc levels on activity of superoxide dismutases & acid phosphatases and organic acid exudation on wheat genotypes. Physiol Mol Biol Plants 20 (1), 41, 2013.
  • 22. HAFSI C., FALLEH H., SAADA M., RABHI M., MKADMINI K., KSOURI R., ABDELLY C., SMAOUI A. Effects of potassium supply on growth, gas exchange, phenolic composition, and related antioxidant properties in the forage legume Sulla carnosa. Flora 223, 38, 2016.
  • 23. AL-KARAKI G.N. Germination, sodium, and potassium concentrations of barley seeds is influenced by salinity. J Plant Nutr 24, 511, 2001.
  • 24. JIANG Q., ROCHE D., MONACO T.A., DUEHAM S. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of fourteen barley genetic lines in response to salinity. Field Crops Research 96, 269, 2006.
  • 25. ZHAO J., SUN H., DAI H., ZHANG G., WU F. Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172, 395, 2010.
  • 26. ZIELINSKI H, KOZLOWSKA H. Antioxidant activity and total phenolic in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry 48, 2008, 2000.
  • 27. PARAS S., HARDEEP S.G. Antioxidant and phenol oxidase activity of germinated barley and its milling fractions. Food Chemistry 120, 673, 2010.
  • 28. ZHISHEN J.J., MENGCHENG T.T., JIANMIN W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64, 555, 1999.
  • 29. BRAND-WILLIAMS W., CUVELIER M.E., BERSET C. Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und – Technology 28, 25, 1995.
  • 30. RE R., PELLIGRINI N., PROTEGGENTE A., PANNALA A., YANG M., RICE-EVANS C.A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine 26, 1231, 1999.
  • 31. HAWORTH M., KILLI D., MATERASSI A., RASCHI A., CENTRITTO M. Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated (CO₂). Front Plant Sci 7, 1568, 2016.
  • 32. SENGUTTUVEL P., VIJAYALAKSHMI C., THIYAGARAJAN K., KANNANBAPU J.R., KOTA S., PADMAVATHI G., GEETHA S., SRITHARAN N., VIRAKTAMATH B.C. Changes in photosynthesis, chlorophyll fluorescence, gas exchange parameters and osmotic potential to salt stress during early seedling stage in rice (Oryza sativa L.). SABRAO Journal of Breeding and Genetics 46, 120, 2014.
  • 33. ISHAK N.K., SULAIMAN Z., TENNAKOON K.U. Comparative study on growth performance of transgenic (Over-expressed OsNHX1) and wild-type Nipponbare under different salinity regimes. Rice Science 22, 275, 2015.
  • 34. ALLEL D., BEN-AMMAR A., ABDELLY C. Leaf Photosynthesis, Chlorophyll Fluorescence and Ion Content of Barley (Hordeum vulgare L.) in Response to Salinity, Journal of Plant Nutrition, DOI: 10.1080/01904167.2017.1385811, 2017.
  • 35. WANG Z., XU Y., WANG J., YANG J., ZHANG J. Polyamine and ethylene interactions in grain filling of superior and inferior spikelets of rice. Plant Growth Regul 66, 215, 2012.
  • 36. PIASECKA A., SAWIKOWSKA A., KUCZYNSKA A., OGRODOWICZ P., MIKOLAJCZAK K., KRYSTKOWIAK K., GUDY K., GUZY-WROBELSKA J., KRAJEWSKI P., KACHLICKI P. Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. The Plant Journal 89, 898, 2017.
  • 37. AHMED I.M., DAI H.X., ZHENG W., CAO F.B., ZHANG G.P., SUN D., WU F.B. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem 63, 49, 2013a.
  • 38. AHMED I.M., NADIRA U.A., BIBI N., CAO F., HE X., ZHANG G., WU F. Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separated and combined, in Tibetan wild barley. Environ Exp Bot 111, 1-12, 2015.
  • 39. CHUNTHABUREE S., SANITCHON J., PATTANAGUL W., THEERAKULPISUT P. Effects of Salt Stress after Late Booting Stage on Yield and Antioxidant Capacity in Pigmented Rice Grains and Alleviation of the Salt-Induced Yield Reduction by Exogenous Spermidine. Plant Production Science 18 (1), 32, 2015.
  • 40. QUAN N.T., ANH L.H., KHANG D.T., TUYEN P.T., TOAN N.P., MINH T.N., MINH L.T., BACH D.T., HA P.T.T., ElZAAWELY A.A., KHANH T.D., TRUNG K.H., XUAN T.D. Involvement of Secondary Metabolites in Response to Drought Stress of Rice (Oryza sativa L.). Agriculture 6, 23, 2016.
  • 41. MINH L.T., KHANG D.T., HA P.T.T., TUYEN P.T., MINH T.N., QUAN N.V., XUAN T.D. Effects of Salinity Stress on Growth and Phenolics of Rice (Oryza sativa L.). International Letters of Natural Sciences 57, 1, 2016.
  • 42. REZAZADEH A., GHASEMZADEH A., BRANI M., TELMADARREHEI T. Effect of salinity on phenolic composition and antioxidant activity of Artichoke (Cynara scolymus L.) leaves. J. Med. Plant Res 6, 245, 2012.
  • 43. JAHANTIGH O., NAJAFI F., BADI H.N., KHAVARI-NEJAD R.A., SANJARIAN F. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress. Acta Biologica Hungarica 67(2), 195, 2016.
  • 44. PETROPOULOS S.A., LEVIZOU E., NTATSI G., FERNANDES A., PETROTOS K., AKOUMIANAKIS K., BARROS L., FERREIRA I.C.F.R. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chemistry 214, 129, 2017.
  • 45. ELEUCH L., REZGUI S., SLIM AMARA H. Effect of salt treatment on the expression of phenolics and peroxidase activity assessed in two barley cultivars Ascad 1230 and Arig 8. Journal of Agronomy 4 (3), 196, 2005.
  • 46. BETTAIEB-REBEY I., BOURGOU S., RAHALI F.Z., MSAADA K., KSOURI R., MARZOUK B. Relation between salt tolerance and biochemical changes in cumin (Cuminum cyminum L.) seeds. Journal of Food and Drug Analysis 25, 391, 2017.
  • 47. QUAN X., QIAN Q., YE Z., ZENG J., HAN Z., ZHANG G. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress. Journal of Plant Physiology 206, 59, 2016.
  • 48. RAO A., AHMAD S.D., SABIR S.M., AWAN S., SHAH A.H., KHAN M.F., KHAN S.A., SHAFIQUE S., ARIF S., ABBAS S.R., GOHAR M. Antioxidant activity and lipid peroxidation of selected wheat cultivars under salt stress. Journal of Medicinal Plants Research 7 (4) 25, 155, 2013.
  • 49. SUNIL D.K., JAI C.T., ACHARYA R., NILIMA S.R., DEVASAGAYAM T.P.A., REDDY A.V.R. Evaluation of antioxidant activity of wheat grass (Triticum aestivum L.,) as a function of growth under different conditions. Phytother. Res 20, 218, 2006.
  • 50. TRUST B., SHIN N., JIM E.D., HARRY D.S. Antioxidant activity of pearled wheat and roller milled fractions. Cereal Chem 82, 390, 2005.
  • 51. LAHOUAR L., EL AREM A., GHRAIRI F., CHAHDOURA H., BEN SALEM H., EL FELAH M., ACHOUR L. Phytochemical content and antioxidant properties of diverse varieties of whole barley (Hordeum vulgare L.) grown in Tunisia. Food Chemistry 145, 578, 2014.
  • 52. HIRASAWA T., SATOA K., YAMAGUCHIA M., NARITAA R., KODAMAA A., ADACHIA S., OOKAWAA T., SATO K. Differences in dry matter production, grain production, and photosynthetic rate in barley cultivars under long-term salinity. Plant Production Science 20 (3), 288, 2017.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1804eb37-e264-42dc-a950-e5b26655e4df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.