Warianty tytułu
Języki publikacji
Abstrakty
The remediation of heavy metal-contaminated sites using plants is a promising alternative to current methodologies. In this study, small-scale wetlands were constructed to search for new plant species that are suitable and hold potential for phytoremediation of heavy metalcontaminated wastewater originating from an electroplating plant. Ten macrophyte species [Phragmites australis (Cav.) Trin., Typha orientalis Presl, Lythrum salicaria Linn., Arundo donax Linn. var. versicolor Stokes, Typha minima Funk, Juncus effusus L., Pontederia cordata L., Cyperus alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth., Acorus calamus Linn., and Iris pseudacorus Linn.] were investigated and compared for their shapes, biomass, roots, and ability to accumulate heavy metals. Acorus calamus Linn., T. orientalis Presl, P. australis (Cav.) Trin., T. minima Funk, and L. salicaria Linn. exhibited the highest levels of metal tolerance, whereas P. cordata L., I. pseudacorus Linn., and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth. had the lowest. Some plants accumulated higher concentrations of metals in the tissues compared with other species such as T. minima Funk, P. australis (Cav.) Trin., L. salicaria Linn., A. donax Linn. var. versicolor Stokes, P. cordata L., and A. calamus Linn., whereas T. orientalis Presl and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Ku¨kenth. had poor capacity to accumulate heavy metals. The results showed that, of the 10 species, P. australis (Cav.) Trin., A. calamus Linn., T. minima Funk, and L. salicaria Linn. are the most suitable and promising plant materials for phytoremediation of heavy metal-contaminated wastewater.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.355-364,fig.,ref.,
Twórcy
autor
- Key Lab of Botany, Department of Biological Science, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
autor
- Key Lab of Botany, Department of Biological Science, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
autor
- Key Lab of Botany, Department of Biological Science, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
autor
- Key Lab of Botany, Department of Biological Science, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Bibliografia
- Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation. Environ Sci Technol 27:2630–2636
- APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Baltimore
- Ayaz SC, Akca L (2001) Treatment of wastewater by natural systems. Environ Int 26:189–195
- Bart V, Paul Q, Filip MG (2005) The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea. Environ Pollut 135:303–312
- Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 53–70
- Brix H (1994) Functions of macrophytes in constructed wetlands. Water Sci Technol 29:71–78
- Cary EE, Allaway WH, Olson OE (1977) Control of chromium concentrations in food plants 1. Absorption and translocation of chromium by plants. J Agr Food Chem 25:300–304
- Chaney RL, Angle JS, McIntosh MS (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Natureforsch 60c:190–198
- Chen HM, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234
- Chen TB, Huang ZC, Huang YY, Xie H, Liao XY (2003) Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation. Chin Sci Bull 48:1586–1591
- Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325
- Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719
- Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36
- David JM, Bridget MM, Marinus LO (2005) Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra Merlin. Environ Pollut 134:343–351
- Dombeck G, Perry M, Phinney J (1998) Mass balance on water column trace metals in a free-surface-flow-constructed wetland in Sacramento California. Ecol Eng 10:313–339
- Dunbain JS, Bowner KH (1992) Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci Total Environ 111:151–168
- Dushenkkov V, Kumar P, Motto H (1995) The use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245
- Evanko CR, Dzombak DA (1997) Remediation of metals contaminated soils and groundwater. Technology Evaluation Report TE-97-01. In: Ground-water remediation technologies analysis center, Pittsburg, 1997
- Fritioff A, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from storm water. Int J Phytoremediation 5:211–224
- Garbisu C, Alkorta I (2001) Phytoextraction: a cost effective plant based technology for the removal of metals from the environment. Bioresour Technol 77:229–236
- Gersberg RM, Elkins BV, Lyon SR (1986) Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res 20:363–368
- Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants from biomolecules to ecosystems, 2nd edn. Springer-Verlag, Berlin, pp 1–27
- Greger M, Kautsky L (1993) Use of macrophytes for mapping bioavailable heavy metals in shallow coastal areas. Appl Geochem Suppl 37–43
- Gupta AK, Sinha S (2006) Chemical fractionation and heavy metals accumulation in the plants of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere 64:161–173
- Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63:1744–1753
- Hardej M, Ozimek T (2002) The effect of sewage sludge flooding on growth and morphometric parameters of Phragmites australis (Cav.) Trin. ex Steudel. Ecol Eng 18:343–350
- Jenssen P, Maehlum T, Krogstad T (1993) Potential use of constructed wetlands for wastewater treatment in northern environments. Water Sci Technol 28:149–157
- Kadlec RH, Knight RL (1996) Treatment wetland. CRC Press, New York
- Kotas J, Stasicka Z (2000) Commentary: chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283
- Kumar P, Dushenkko V, Motto H (1995) Phytoextraction the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238
- Li WP, Wang J, Li W, Wang JC (1995) Application of water hyacinth to the removal of heavy metals from electroplate wastewater. Chin J Ecol 14:30–35 (in Chinese)
- Liu W, Shu WS, Lan CY (2004) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull 49:29–32
- Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous water. Ecol Eng 20:65–74
- Matagi S, Swai D, Mugabe R (1998) A review of heavy metal removal mechanisms in wetlands. Afr J Trop Hydrobiol Fish 8:23–35
- Mays P, Edwards G (2001) Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine discharge. Ecol Eng 16:487–500
- McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients-food safety issues. Field crops Res 60:143–163
- Mills T, Robinson B, Green D et al (2000) Difference in Cd uptake and distribution within poplar and willow species. In: Proceedings of the 42nd annual conference and expoof the New Zealand water and waste association, Rotorua, 2000
- Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005
- Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207
- Mungur AS, Shutes RBE, Revitt DM et al (1997) An assessment of metal removal by a laboratory scale wetland. Water Sci Technol 35:125–133
- Murray-Gulde CL, Bearr J, Rodgers JH (2005) Evaluation of a constructed wetland treatment system specifically designed to decrease bioavailable copper in a wastestream. Ecotoxicol Environ Safety 61:60–73
- Rai UN, Sinha S, Triphati RD et al (1995) Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5:5–12
- Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8:221–226
- Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229
- Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668
- Schnoor JL (1997) Ground water remediation technologies analysis center. Pittsburg, USA
- Scholz M (2003) Performance perdictions of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper. Water Res 37:1270–1277
- Shanker AK, Cervantes C, Loza-Tavera H et al (2005) Chromium toxicity in plants. Environ Int 31:739–753
- Sharma SS, Gaur JP (1995) Potential of Lemna polyrhiza for removal of heavy metals. Ecol Eng 4:37–45
- Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145:234–237
- Tang S (1993) Experimental study of a constructed wetland for treatment of acidic wastewater from an iron mine in China. Ecol Eng 2:253–259
- Vollenweider RA (1974) A manual on methods for measuring primary production in aquatic environments. IBP Handbook No. 12 International Biological Programme, 2nd edn. Blackwell Scientific Publications, Oxford, pp 225
- Watanabe ME (1997) Phytoremediation on the brink commercialization. Environ Sci Technol News 31:182A–186A
- Wei CY, Chen TB, Huang ZC et al (2002) Cretan brake (Pteris cretica L.): an arsenic-accumulating plant. Acta Ecologica Sinica 22:777–778 (in Chinese)
- Wei SH, Zhou QX, Wang X et al (2005) A newly-discovered Cdhyperaccumulator Solanum nigrum L. Chin Sci Bull 50:33–38
- Weis JS, Weis P (2004) Review metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700
- Wolterbeek HTh, Van Der Meer AJGM (2002) Transport rate of arsenic, cadmium, copper and zinc in Potamogeton pectinatus L.: radiotracer experiments with 76As, 109,115Cd, 64Cu and 65,69mZn. Sci Total Environ 287:13–30
- Xiong ZT (1998) Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291
- Xue SG, Chen YX, Reeves RD et al (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399
- Yang X, Long XX, Ni WZ (2002) Sedum alfredii H: a new zn hyper accumulating plant first found in China. Chin Sci Bull 47:1634–1637
- Zhang XH, Wang DQ, Huang M (2004) Development of electroplating sludge technology. J Guilin Univ Technol 24:502–506 (in Chinese)
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-176e2803-402c-42bf-80db-38b84d057cab