Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 05 |
Tytuł artykułu

Molecular characterization of SCARECROW (CsSCR) gene expressed during somatic embryo development and in root of cucumber (Cucumis sativus L.)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Somatic embryogenesis (SE) in plants can be used as a model for studying genes engaged in the embryogenic transition of somatic cells. The CsSCARECROW (CsSCR) gene was previously identified among a panel of genes upregulated after the induction of SE in cucumber (Cucumis sativus). The putative CsSCR protein contains conserved GRASfamily domains and is extremely similar toAtSCRfrom Arabidopsis thaliana. SCR proteins are transcription factors involved in root radial patterning and are required for maintenance of the quiescent centre and differentiation of the endodermis. In comparison with other GRAS proteins from cucumber, phylogenetic analyses showed that CsSCR belongs to the SCR cluster. Increased CsSCR transcript accumulation was detected in somatic embryos and roots. Southern blot analysis and screening of the draft version of the cucumber genome confirmed the lack of close homologues in this species. CsSCR transcripts were localized by in situ hybridization in undifferentiated cells in the globular and heart stages of somatic embryogenesis, and in the endodermis of torpedo and cotyledonary stage somatic embryos, and developing primary and lateral roots. This localizationwas supported by the pattern of reporter gene activity driven by the CsSCR promoter in transgenic cucumber organs.These results suggest thatCsSCR is likely to act in tissue radial organization during somatic embryogenesis and root development.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
05
Opis fizyczny
p.1483-1495,fig.,ref.
Twórcy
autor
  • Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Human Life Science, Hiroshima Jogakuin University, 4-13-1 Ushita-Higashi, Higashiku, Hiroshima 732-0063, Japan
autor
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • Ahmed KZ, Sagi F (1993) High-efficiency plant regeneration from an embryogenic cell suspension culture of winter wheat (Triticum aestivum L.). Acta Biol Hung 44:421–432
  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
  • Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70
  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692
  • Bozhkov PV, Filonova LH, von Arnold S (2002) A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol Bioeng 77:658–667
  • Burza W, Zuzga S, Yin Z, Malepszy S (2006) Cucumber (Cucumis sativus L.). In: Wang K (ed) Methods in molecular biology 343 Agrobacterium protocols, vol 1. Humana Press, Totowa, NJ, pp 427–438
  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425
  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essentials for generating the radial organization of the Arabidopsis root. Cell 96:423–433
  • Dubrovsky JG, Rost TL (2003) Root development/lateral root initiation. In: Thomas B, Murphy DJ, Murray B (eds) Encyclopedia of applied plant science. Elsevier, pp 1101–1107
  • Dubrovsky JG, Doerner PW, Colo´n-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124:1648–1657
  • Filipecki MK, Sommer H, Malepszy S (1997) The MADS-box gene CUS1 is expressed during cucumber somatic embryogenesis. Plant Sci 125:63–74
  • Fujimura T, Komamine A (1979) Synchronization of somatic embryogenesis in a carrot cell suspension culture. Plant Physiol 64:162–164
  • Grabowska A, Wisniewska A, Tagashira N, Malepszy S, Filipecki M (2009) Characterization of CsSEF1 gene encoding putative CCCH-type zinc finger protein expressed during cucumber somatic embryogenesis. J Plant Physiol 166:310–323
  • Gubler F, Jacobsen JV (1992) Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell 4:1435–1441
  • Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev 6:609–618
  • Heidstra R, Welch D, Scheres B (2004) Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18:1964–1969
  • Heimsch C, Seago JL (2008) Organization of the root apical meristem in angiosperms. Am J Bot 95:1–21
  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567
  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements PLACE database. Nucleic Acids Res 27:297–300
  • Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19:679–689
  • Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70
  • Itzhaki H, Maxson JM, Woodson WR (1994) An ethylene responsive enhancer is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Natl Acad Sci USA 91:8925–8929
  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907
  • Johnson PF, Sterneck E, Williams SC (1993) Activation domains of transcriptional regulatory proteins. J Nutr Biochem 4:386–398
  • Kamiya N, Itoh JI, Morikami A, Nagato Y, Matsuoka M (2003) The SCARECROW gene’s role in asymmetric cell divisions in rice plants. Plant J 36:45–54
  • Laajanen K, Vuorinen I, Salo V, Juuti J, Raudaskoski M (2007) Cloning of Pinus sylvestris SCARECROW gene and its expression pattern in the pine root system, mycorrhiza and NPA-treated short roots. New Phytol 175:230–243
  • Lanahan MB, Ho TH, Rogers SW, Rogers JC (1992) A gibberellin response complex in cereal alpha-amylase gene promoters. Plant Cell 4:203–211
  • Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327
  • Lim J, Helariutta Y, Szpecht CD, Jung J, Sims L, Bruce WB, Diehl S, Benfey PN (2000) Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial pattering in diverse meristem. Plant Cell 12:1307–1318
  • Lim J, Jung JW, Lim CE, Lee MH, Kim BJ, Kim M, Bruce WB, Benfey PN (2005) Conservation and diversification of SCARECROW in maize. Plant Mol Biol 59:619–630
  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876
  • Linkiewicz A, Filipecki M, Tomczak A, Grabowska A, Malepszy S (2004) The cloning of sequences differentially transcribed during the induction of somatic embryogenesis in cucumber (Cucumis sativus L.). Cell Mol Biol Lett 9:795–804
  • Malinowski R, Filipecki M, Tagashira N, Wiśniewska A, Gaj P, Pląder W, Malepszy S (2004) Xyloglucan endotransglucosylase/hydrolase genes in cucumber (Cucumis sativus)—differential expression during somatic embryogenesis. Physiol Plant 120: 678–685
  • Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, Hehl R, Hornischer K, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Mu¨nch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31:374–378
  • Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol 130:111–119
  • Montgomery J,Goldman S,Deikman J,Margossian L, FischerRL(1993) Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90:5939–5943
  • Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J (1998) Functional dissection of a sugar-repressed alpha-amylase gene (RAmy1A) promoter in rice embryos. FEBS Lett 423:81–85
  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311
  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York
  • Peng J, Richards DE, Moritz T, Caño-Delgado A, Harberd NP (1999) Extragenic suppressors of the Arabidopsis gai mutation alter the dose–response relationship of diverse gibberellin responses. Plant Physiol 119:1199–1208
  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119
  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277
  • Rost TL (2011) The organization of roots of dicotyledonous plants and the positions of control points. Ann Bot 107:1213–1222
  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358
  • Sassa N, Matsushita Y, Nakamura T, Nyunoya H (2001) The molecular characterization and in situ expression pattern of pea SCARECROW gene. Plant Cell Physiol 42:385–394
  • Sbabou L, Bucciarelli B, Miller S, Liu J, Berhada F, Filali-Maltouf A, Allan D, Vance C (2010) Molecular analysis of SCARECROW genes expressed in white lupin cluster roots. J Exp Bot 61:1351–1363
  • Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout embryonic axis. Development 121:53–62
  • Silverstone AL, Ciampaglio CN, Sun T (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169
  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4 0. Mol Biol Evol 24:1596–1599
  • Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532
  • Torres-Galea P, Huang LF, Chua NH, Bolle C (2006) The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses. Mol Genet Genomics 276:13–30
  • Wiśniewska A, Grabowska A, Pietraszewska-Bogiel A, Tagashira N, Zuzga S, Wóycicki R, Przybecki Z, Malepszy S, Filipecki M (2012) Identification of genes up-regulated during somatic embryogenesis of cucumber. Plant Physiol Biochem 50:54–64
  • Wóycicki R, Witkowicz J, Gawroński P, Da˛browska J, Lomsadze A, Pawełkowicz M, Siedlecka E, Yagi K, Pla˛der W, Seroczyńska A, Śmiech M, Gutman, W, Niemirowicz-Szczytt K, Bartoszewski G, Tagashira N, Hoshi Y, Borodovsky M, Karpiński S, Malepszy S, Przybecki Z (2011) The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS ONE 6:e22728. doi: 10.1371/journal.pone.0022728
  • Wróblewski T, Filipecki M, Malepszy S (1995) Factors influencing cucumber (Cucumis sativus L.) somatic embryogenesis I. The crucial role of pH and nitrogen in suspension culture. Acta Soc Bot Pol 64:223–231
  • Wu C, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 23:415–421
  • Wysocka-Diller J, Helariutta Y, Fukaki H, Malamy J, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial pattering mechanism common to root and shoot. Development 127:595–603
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1740e586-d5a7-4acc-a1d0-ae9c4dc441e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.