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ABSTRACT 

In present work, an approach to porous PEO coating sub-layers determination on the basis of 

Glow-Discharge Optical Emission Spectroscopy (GDOES) measurements, is presented. CP Titanium 

Grade 2 was used for the study. By interpreting the depth profiles obtained by GDOES, the Authors 

could reveal boundaries of zones with specific features in the obtained coating. This way the porous 

PEO coating can be divided into different sub-layers. The use of the first and second derivatives of 

hydrogen, phosphorus and titanium signals in the GD profiles allowed to determine these sub-layers, 

with results shown in that article.  

 

Keywords: model of PEO coating; Plasma Electrolytic Oxidation (PEO); Micro Arc Oxidation 

(MAO); CP Titanium Grade 2; Glow-Discharge Optical Emission Spectroscopy (GDOES); porous 

coating 

 

 

 

1.  INTRODUCTION  

 

Production of porous coatings  on biomaterials is very important due to the assimilation 

of the implants to the living organisms. In case of nanolayers with most likely pico-porosity, 

which may be obtained by electropolishing EP [1-5], magnetoelectropolishing MEP [5-16] or 
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high-current density electropolishing HDEP [17-19] the most important parameter is the 

chemical composition of passive layers obtained. In addition, it has to be pointed out that by 

using those electrochemical methods it is possible to enrich those nanolayers in different 

chemical elements in order to increase their corrosion resistance as well as decrease the 

amount of elements which can sensitize, i.e. nickel, aluminum, or chromium on the sixth 

oxidation stage. 

On the other hand for porous microlayers, which can be also enriched in selected 

chemical elements, such as antimicrobial copper [20-25], the entire porous zone is interacting 

with the environment. Such porous layers may be formed with the use of Plasma Electrolytic 

Oxidation (PEO) known also as Micro Arc Oxidation (MAO) [26-35]. To understand the 

formation process of PEO coatings it is necessary to find out and propose an approach to 

describe these sub-layers of PEO coatings and we have used for that Glow-Discharge Optical 

Emission Spectroscopy (GDOES) signals [36-37].  The paper aims at describing this novel 

original method. 

 

 

2.  METHOD 

 

The samples of CP Titanium Grade 2 after Plasma Electrolytic Oxidation (Micro Arc 

Oxidation) were treated for the surface studies. At the beginning, the samples were polished 

by mechanical treatment in the form of rectangular specimens of dimensions 30  10 mm cut 

off from the metal sheet 2 mm thick. The plasma electrolytic oxidation (PEO) was performed 

at the voltage of 450 ±10 V. The studies were carried out in the electrolyte of initial 

temperature of  20 2 C. For the studies, the electrolyte based on orthophosphoric acid 

H3PO4 with copper nitrate Cu(NO3)2, was used. For each run, the electrolytic cell made of 

glass was used, containing up to 500 ml of the electrolyte. GDOES sputters a representative 

area of the sample of interest (in our case 4 mm in diameter), the sputtered species being 

simultaneously excited by the GD plasma. The observed signals therefore represent at each 

time an average of the sputtered area. Measurements were done with a Horiba Scientific GD 

Profiler 2 instrument using RF asynchronous pulse generator under the plasma conditions 

(pressure: 700 Pa, power: 40 W, frequency: 3000 Hz, duty cycle: 0.25, anode diameter: 4 

mm). The signals of copper (325 nm), phosphorus (178 nm), oxygen (130 nm), hydrogen (122 

nm), and titanium (365 nm), were measured.  

 

 

3.  RESULTS AND DISCUSSION 

 

In Figures 1-5, the GDOES depth profiles signals of titanium, phosphorus, copper, 

oxygen and hydrogen with their first and second derivatives are presented. Due to the 

roughness of the materials, the original signals feature slow changing trends making difficult 

the finding of the sub-layers of the PEO coating and so, the Authors decided to use the first 

and second derivatives, which may better reveal the boundaries of these sub-layers.  

Based on titanium, phosphorus, oxygen and copper signals, it is possible to state that the 

PEO coating is found up to a depth corresponding to a sputtering time of about 900 s. All the 

spectra show a top surface zone with high amount of contamination from the start until about 

50 s of sputtering time. 
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Fig. 1. GDOES results of titanium signal (blue line) and its first and second derivatives by 

sputtering time (corresponding brown and red lines) of PEO coating formed on titanium 
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Fig. 2. GDOES results of phosphorus signal (blue line) and its first and second derivatives by 

sputtering time (corresponding brown and red lines) of PEO coating formed on titanium 
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Fig. 3. GDOES results of copper signal (blue line) and its first and second derivatives by 

sputtering time (corresponding brown and red lines) of PEO coating formed on titanium 
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Fig. 4. GDOES results of oxygen signal (blue line) and its first and second derivatives by 

sputtering time (corresponding brown and red lines) of PEO coating formed on titanium 
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Fig. 5. GDOES results of hydrogen signal (blue line) and its first and second derivatives by 

sputtering time (corresponding brown and red lines) of PEO coating formed on titanium. 
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The next sub-layer is located at the depth corresponding to sputtering time from 50 s up 

to about 350 s. That sub-layer is enriched in copper, phosphorous and oxygen. The following 

sub-layer, the transition one, is located under the previous layer, i.e. at a depth corresponding 

to sputtering time in the range of 350 s to 900 s.  

Authors decided that the penetration of organic contamination (revealed by C and H 

signals) inside the PEO coating most likely is the tracer of the boundary of the presence of 

porosity. Therefore on the basis of the hydrogen signal and its first and second derivatives 

(Fig. 5), it is possible to find the boundary of that porosity, which is at a depth corresponding 

up to about 750 s of sputtering time.  

 

 

4.  CONCLUSIONS 

 

The investigation carried out GDOES measurements on CP Titanium Grade 2 after PEO 

processing allowed to formulate the following conclusions: 

 

 the first and second derivatives of GDOES signals by sputtering time may be used for 

finding boundaries of sub-layers of porous PEO coating 

 most likely the simplest model of porous PEO coating can be built with three sub-

layers 

 the first, top sub-layer is the thinnest and most contaminated one and it has a thickness 

corresponding to sputtering time of about 50 s 

 the second, porous sub-layer enriched in phosphorus, oxygen and copper has a 

thickness corresponding to sputtering time of about 300 s 

 the third, transition sub-layer has a thickness corresponding to sputtering time of 550 s 

 the porosity boundary from top of the surface down corresponds to the sputtering time 

of 750 s. 
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