Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Ureolysis-driven microbially induced carbonate precipitation (MICP) has recently received attention for its potential biotechnological applications. However, information on the enrichment and production of ureolytic microbes by using bioreactor systems is limited. Here, we report a low-tech down-flow hanging sponge (DHS) bioreactor system for the enrichment and production of ureolytic microbes. Using this bioreactor system and a yeast extract-based medium containing 0.17 M urea, ureolytic microbes with high potential urease activity (> 10 μmol urea hydrolyzed per min per ml of enrichment culture) were repeatedly enriched under non-sterile conditions. In addition, the ureolytic enrichment obtained in this study showed in vitro calcium carbonate precipitation. Fluorescence in situ hybridization analysis showed the existence of bacteria of the phylum Firmicutes in the bioreactor system. Our data demonstrate that this DHS bioreactor system is a useful system for the enrichment and production of ureolytic microbes for MICP applications.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.59-65,fig.,ref.
Twórcy
autor
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
autor
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
autor
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
autor
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Nugata, Japan
autor
- Department of Science and technology Innovation, Nagaoka University of Technology, Nagaoka, Nugata, Japan
autor
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
Bibliografia
- Achal V., X. Pan and D. Zhang. 2012. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere. 89: 764–768.
- Agrawal L.K., Y. Ohashi, E. Mochida, H. Okui, Y. Ueki, H. Harada and A. Ohashi. 1997. Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process. Wat. Sci. Tech. 36: 433–440.
- Amann R.I., B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux and D.A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919–1925.
- Anbu P., C.-H. Kang, Y.-J. Shin and J.-S. So. 2016. Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus. 5: 250.
- Cheng L. and R. Cord-Ruwisch. 2013. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture. J. Ind. Microbiol. Biotechnol. 40: 1095–1104.
- Daims H., A. Brühl, R. Amann, K.-H. Schleifer and M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434–444.
- Dhami N.K., M.S. Reddy and A. Mukherjee. 2013. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J. Microbiol. Biotechnol. 23: 707–714.
- Dupraz C., R.P. Reid, O. Braissant, A.W. Decho, R.S. Norman and P.T. Visscher. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96: 141–162.
- Gat D., Z. Ronen and M. Tsesarsky. 2016. Soil bacteria population dynamics following stimulation for ureolytic microbial-induced CaCO3 precipitation. Environ. Sci. Technol. 50: 616–624.
- Hammes F., N. Boon, J. de Villiers, W. Verstraete and S.D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901–4909.
- Harkes M.P., L.A. van Paassen, J.L. Booster, V.S. Whiffin and M.C.M. van Loosdrecht. 2010. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol. Eng. 36: 112–117.
- Kang C.-H., Y. Shin, P. Anbu, I.-H. Nam and J.-S. So. 2016. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation. J. Gen. Appl. Microbiol. 62: 206–212.
- Li M., X. Cheng and H. Guo. 2013. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegradation. 76: 81–85.
- Meier H., R. Amann, W. Ludwig and K.H. Schleifer. 1999. Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol. 22: 186–196.
- Mobley H.L.T. and R.P. Hausinger. 1989. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev. 53: 85–108.
- Onodera T., K. Matsunaga, K. Kubota, R. Taniguchi, H. Harada, K. Syutsubo, T. Okubo, S. Uemura, N. Araki, M. Yamada and others. 2013. Characterization of the retained sludge in a down-flow hanging sponge (DHS) reactor with emphasis on its low excess sludge production. Bioresour. Technol. 136: 169–175.
- Snaidr J., R. Amann, I. Huber, W. Ludwig and K.-H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63: 2884–2896.
- Tandukar M., A. Ohashi and H. Harada. 2007. Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewater. Water Res. 41: 2697–2705.
- Uemura S. and H. Harada. 2010. Application of UASB technology for sewage treatment with a novel post-treatment process, pp. 91–112. In: Fang H.H.P. (ed). Environmental Anaerobic Technology, Applications and New Developments. Imperial College Press, London, UK.
- Vahabi A., A.A. Ramezanianpour, H. Sharafi, H.S. Zahiri, H. Vali and K.A. Noghabi. 2013. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. J. Basic. Microbiol. 55: 105–111.
- Wei S., H. Cui, Z. Jiang, H. Liu, H. He and N. Fang. 2015. Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Braz. J. Microbiol. 46: 455–464.
- Whiffin V.S. 2004. PhD Thesis. Microbial CaCO3 precipitation for the production of biocement. Murdoch University, Western Australia, Australia.
- Zhu T. and M. Dittrich. 2016. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front. Bioeng. Biotechnol. 4:4.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-16c4b249-6bbf-4c50-8738-23e21d45cfbe