Czasopismo
Tytuł artykułu
Warianty tytułu
Intestinal microbiota as part of normal physiology of the host
Języki publikacji
Abstrakty
The gastrointestinal tract in humans and animals contains a very large number of highly diverse microorganisms. This microbiota plays a major role in the host’s physiology, homeostasis, and well-being. It forms a barrier against infection, helps to develop and mature the immune system, and participates in the extraction of nutrients and energy from food. Various members of microbial community maintain the integrity of the intestinal barrier and promote epithelial repair after injury. The intestinal barrier defenses consist of the mucous layer, antimicrobial peptides, secretory IgA, and the epithelial barrier function by junctional adhesion complex. A healthy host exists in a state of balance with its microorganisms. A disruption of the microbial community increases the host’s susceptibility to infection. Although the immune response is necessary for the host to eliminate the invading pathogen, certain aspects of the host’s response may work to the pathogen’s advantage. Certain components of the microbiota have been shown to drive inflammatory response, which, if uncontrolled, has the potential to induce a pathological response, whereas others enhance or promote antiinflammatory responses. The effector microbial molecules are usually detected via receptor-signaling pathways including Toll-like receptors, NOD-like receptors, and C-type lectin receptors. These pattern-recognition receptors (PRRs) interact with and identify microbe-associated molecular patterns (MAMPs) of both commensal and pathogenic bacteria. PRRs signaling, once thought to exclusively yield pro-inflammatory activation by pathogenic bacteria, is now known to be differentially activated by commensal and probiotic bacteria to induce pathways involved in gut homeostasis, cytoprotection, epithelial cell proliferation, regulation of tight junctions, and antimicrobial peptide secretion. The microbial-epithelial cross-talk is fundamental in appreciating how the developing intestine achieves tolerance to bacteria and how dysregulation of this process may predispose the gut to inflammation and disease.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
s.536-541,rys.,bibliogr.
Twórcy
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
autor
- Zakład Mikrobiologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul. Ciszewskiego 8, 02-786 Warszawa
Bibliografia
- Baarlen P., Wells J. M., Kleerebezem M.: Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol. 2013, 34, 208-215.
- Binek M.: Mikrobiom człowieka – zdrowie i choroba. Postępy Mikrobiol. 2012, 51, 27-36.
- Binek M., Kizerwetter-Świda M., Sikora A.: Rozwój relacji gospodarz–mikroflora, [w:] Skrzypczak W., Stefaniak T., Zabielski R. (red.): Fizjologia noworodka z elementami patofizjologii. PWRiL, Warszawa 2011, s. 244-273.
- Cario E., Gerken G., Podolsky D. K.: Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007, 132, 1359-1374.
- Cerutti A., Rescigno M.: The biology of intestinal immunoglobulin A responses. Immunity 2008, 28, 740-750.
- Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A.: Diversity of the human intestinal microbial flora. Science 2005, 308, 1635-1638.
- Fernandez M. I., Pedron T., Tournebize R., Olivo-Marin J. C., Sansonetti P. J., Phalipon A.: Anti-inflammatory role for intracellular dimeric immunoglobulin A by neutralization of lipopolysaccharide in epithelial cells. Immunity 2003, 18, 739-749.
- Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B. S., Gordon J. I., Relman D. A., Fraser-Liggett C. M., Nelson K. E.: Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355-1359.
- Górska S., Jarząb A., Gamian A.: Bakterie probiotyczne w przewodzie pokarmowym człowieka jako czynnik stymulujący układ odpornościowy. Postepy Hig. Med. Dośw. 2009, 63, 653-667.
- Hattori M., Taylor T. D.: The human intestinal microbiome: a new frontier of human biology. DNA Research 2009, 16, 1-12.
- He B., Xu W., Santini P. A., Polydorides A. D., Chiu A., Estrella J., Shan M., Chadburn A., Villanacci V., Plebani A., Knowles D. M., Rescigno M., Cerutti A.: Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007, 26, 812-826.
- Holmgren J., Czerkinsky C.: Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45-S53.
- Kelly D., Campbell J. I., King T. P., Grant G., Jansson E. A., Coutts A. G., Pettersson S., Conway S.: Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat. Immunol. 2004, 5, 104-112.
- Kelsall B. L.: Innate and adaptive mechanisms to control pathological intestinal inflammation. J. Pathol. 2008, 214, 242-259.
- Kelsall B. L., Leon F.: Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol. Rev. 2005, 206, 132-148.
- Kida Y., Shimizu T., Kuwano K.: Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1. Mol. Immunol. 2006, 43, 1972-1981.
- Lee J., Mo J. H., Katakura K., Alkalay I., Rucker A. N., Liu Y. T., Lee H. K., Shen C., Cojocaru G., Shenouda S., Kagnoff M., Eckmann L., Ben-Neriah Y., Raz E.: Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 2006, 8, 1327-1336.
- Ley R. E., Peterson D. A., Gordon J. I.: Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124, 837-848.
- Lopez-Boado Y. S., Wilson C. L., Hooper L. V., Gordon J. I., Hultgren S. J., Parks W. C.: Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 2000, 148, 1305-1315.
- Lotz M., Gutle D., Walther S., Menard S., Bogdan C., Hornef M. W.: Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 2006, 203, 973-984.
- Mackie R. I., Sghir A., Gaskins H. R.: Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999, 69, 1035S-1045S.
- Macpherson A. J., McCoy K. D., Johansen F. E., Brandtzaeg P.: The immune geography of IgA induction and function. Mucosal Immunol. 2007, 1, 11-22.
- Macpherson A. J., Uhr T.: Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004, 303, 1662-1665.
- Marchiando A. M., Graham W. V., Turner J. R.: Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 2010, 5, 119-144.
- Matzinger P.: Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994, 12, 991-1045.
- Muniz L. R., Knosp C., Yeretssian G.: Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front. Immunol. 2012, 3, 310.
- Patel R. M., Lin P. W.: Developmental biology of gut-probiotic interaction. Gut Microbes 2010, 1, 186-195.
- Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S, Medzhitov R.: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118, 229-241.
- Rawls J. F., Mahowald M. A., Ley R. E., Gordon J. I.: Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 2006, 127, 423-433.
- Sekirov I., Russell S. L., Antunes L. C. M., Finlay B. B.: Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859-904.
- Swidsinski A., Loening-Baucke V., Lochs H., Hale L. P.: Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J. Gastroenterol. 2005, 11, 1131-1140.
- Termen S., Tollin M., Rodriguez E., Sveinsdottir S. H., Johannesson B., Cederlund A., Sjovall J., Agerberth B., Gudmundsson G. H.: PU1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol. Immunol. 2008, 45, 3947-3955.
- Tsuji M., Suzuki K., Kinoshita K., Fagarasan S.: Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Semin. Immunol. 2008, 20, 59-66.
- Wehkamp J., Harder J., Wehkamp K., Meissner B. W., Schlee M., Enders C., Sonnenborn U., Nuding S., Bengmark S., Fellermann K., Schroder J. M., Stange E. F.: NF-κB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect. Immun. 2004, 72, 5750-5758.
- Yanagibashi T., Hosono A., Oyama A., Tsuda M., Hachimura S., Takahashi Y., Itoh K., Hirayama K., Takahashi K., Kaminogawa S.: Bacteroides induce higher IgA production than lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer’s patches. Biosci. Biotechnol. Biochem. 2009, 73, 372-377.
- Zeuthen L. H., Fink L. N., Frokiaer H.: Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 2008, 123, 197-208.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.agro-16a7d83b-b5e1-4a59-bc18-e74231ae0a40