Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 1 |
Tytuł artykułu

Evolutionary scenarios associated with the Pteronotus parnellii cryptic species-complex (Chiroptera: Mormoopidae)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the major challenges to understanding the evolution of Neotropical bats concerns our capacity to successfully scrutinize phylogenetic patterns associated with cases of cryptic species complexes. In this study Pteronotus parnellii is examined as a selected example of a known lineage of mormoopid bat that potentially contains several cryptic species. A samples of 452 individuals from 83 different localities, essentially covering its entire mainland distribution, was evaluated using two genetic markers: COI (mitochondrial) and DBY (nuclear) genes. The findings of this study strongly support the hypothesis of high genetic variability and identify at least six lineages within P. parnellii, some of which appear to be cryptic species.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
18
Numer
1
Opis fizyczny
p.91-116,fig.,ref.
Twórcy
  • Departamento de Biologia, Universidad Autonoma Metropolitana, Ciudad de Mexico 09340, Mexico
  • Doctorado en Ciencias Biologicas y de la Salud, Universidad Autonoma Metropolitana, Ciudad de Mexico 09340, Mexico
  • Departamento de Biologia, Universidad Autonoma Metropolitana, Ciudad de Mexico 09340, Mexico
  • Departamento de Hidrobiologia, Universidad Autonoma Metropolitana, Ciudad de Mexico 09340, Mexico
  • Departamento de Hidrobiología, Universidad Autonoma Metropolitana, Ciudad de Mexico 09340, Mexico
  • Doctorado en Ciencias Biologicas y de la Salud, Universidad Autonoma Metropolitana, Ciudad de Mexico 09340, Mexico
autor
  • Estacion Biologica de Donana, C.S.I.C., Avda. Americo Vespucio s/n, 41092 Sevilla, Spain
autor
  • Museu Nacional/UFRJ, Departamento de Vertebrados.20940-040, Rio de Janeiro, RJ, Brazil
autor
  • Estacion Biologica de Donana, C.S.I.C., Avda. Americo Vespucio s/n, 41092 Sevilla, Spain
Bibliografia
  • 1. Agnarsson, I. , C. M. Zambrana-Torrelio , N. P. Flores-Saldana , and L. J. May-Collado . 2011. A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Currents, 2011; 3: RRN1212. Google Scholar
  • 2. Anonymous. 2010. Lineamientos para la conducción ética de la investigación, la docencia y la difusión de la División de Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana, Iztapalapa, México, D.F., 39 pp. Google Scholar
  • 3. Arbeláez-Cortés, E. , B. Milá , and A. G. Navarro-Sigüenza . 2014. Multilocus analysis of intraspecific differentiation in three endemic bird species from the northern Neotropical dry forest. Molecular Phylogenetics and Evolution, 70: 362–377. Google Scholar
  • 4. Baker, R. J. , and R. D. Bradley . 2006. Speciation in mammals and the genetic species concept. Journal of Mammalogy, 87: 643–662. Google Scholar
  • 5. Bandelt, H. J. , P. Forster , and A. Rohl . 1999. Median-Joining Networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16: 37–48. Google Scholar
  • 6. Becerra, J. X. 2005. Timing the origin and expansion of the Mex ican tropical dry forest. Proceedings of the National Academy of Sciences of the USA, 102: 10919–10923. Google Scholar
  • 7. Bogdanowicz, W. , P. Hulva , B. Černá Bolfíková , M. M. Buś , E. Rychlicka , A. Sztencel-Jabłonka , L. Cistrone , and D. Russo . 2015. Cryptic diversity of Italian bats and the role of the Apennine refugium in the phylogeography of the western palaearctic. Zoological Journal of the Linnean Society, 174: 635–648. Google Scholar
  • 8. Capurucho, J. M. G. , C. Cornelius , S. H. Borges , M. Cohnhaft , A. Aleixo , J. P. Metzger , and C. C. Ribas . 2013. Combining phylogeography and landscape genetics of Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene landscape evolution in Amazonia. Biological Journal of the Linnean Society, 110: 60–76. Google Scholar
  • 9. Clare, E. L. 2011. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats. PLoS ONE, 6: e21460. Google Scholar
  • 10. Clare, E. L. , B. K. Lim , M. B. Fenton , and P. D. N. Hebert . 2011. Neotropical bats: estimating species diversity with DNA barcodes. PLoS ONE, 6: e22648. Google Scholar
  • 11. Clare, E. L. , A. M. Adams , A. Z. Maya-Simões , J. L. Eger , P. D. N. Hebert , and B. M. Fenton . 2013. Diversification and reproductive isolation: cryptic species in the only new world high-duty cycle bat, Pteronotus parnellii. BMC Evolutionary Biology, 13: 26. Google Scholar
  • 12. Collevatti, R. G. , L. C. Terribile , G. Oliveira , M. S. Limaribeiro , J. C. Nabout , T. F. Rangel , and J. A. F. Dinizfilho . 2013. Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography, 40: 345–358. Google Scholar
  • 13. Dámmhahn, M. , C. F. Rakotondramanana , and S. M. Goodman . 2015. Coexistence of morphologically similar bats (Vespertilionidae) on Madagascar: stable isotopes reveal fine-grained niche differentiation among cryptic species. Journal of Tropical Ecology, 31: 153–164. Google Scholar
  • 14. Davalos, L. M. 2006. The geography of diversification in the mormoopids (Chiroptera: Mormoopidae). Biological Journal of the Linnean Society, 88: 101–118. Google Scholar
  • 15. De Queiroz, K. 2005. Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences of the USA, 102: 6600–6607. Google Scholar
  • 16. De Thoisy, B. , A. C. Pavan , M. Delaval , A. Lavergne , T. Luglia , K. Pineau , M. Ruedi , V. Rufray , and F. Catzeflis . 2014. Cryptic diversity in common mustached bats Pteronotus cf. parnellii (Mormoopidae) in French Guiana and Brazilian Amapa. Acta Chiropterologica, 16: 1–13. Google Scholar
  • 17. Ditchfield, A. D. 2000. The comparative phylogeography of Neo tropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals. Molecular Ecology, 9: 1307–1318. Google Scholar
  • 18. Excoffier L. , and H. Lischer . 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 10: 564–567. Google Scholar
  • 19. Excoffier, L. , P. Smouse , and J. Quattro . 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479–491. Google Scholar
  • 20. Farris, J. S. , M. Kallersjo , A. G. Kluge , and C. Bult . 1994. Testing significance of incongruence. Cladistics, 10: 315–319. Google Scholar
  • 21. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791. Google Scholar
  • 22. Furman, A. , T. Postawa , T. Öztunç , and E. Çoraman . 2010. Cryptic diversity of the bent-wing bat, Miniopterus schreibersii (Chiroptera: Vespertilionidae), in Asia Minor. BMC Evolutionary Biology, 10: 121. Google Scholar
  • 23. Hasegawa, M. , H. Kishino , and T. Yano . 1985. Dating the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22: 160–174. Google Scholar
  • 24. Hassanin, A. , S. Khouider , G. C. Gembu , S. M. Goodman , B. Kadjo , N. Nesi , X. Pourrut , E. Nakoune , and C. Bonillo . 2015. The comparative phylogeography of fruit bats of the tribe Scotonycterini (Chiroptera, Pteropodidae) reveals cryptic species diversity related to African Pleistocene forest refugia. Comptes Rendus Biologies, 338: 197–211. Google Scholar
  • 25. Hernández-Dávila, A. , J. A. Vargas , N. Martínez-Méndez , B. K. Lim , M. D. Engstrom , and J. Ortega . 2012. DNA barcoding and genetic diversity of phyllostomid bats from the Yucatán Peninsula with comparisons to Central America. Molecular Ecology Resources, 12: 590–597. Google Scholar
  • 26. Hoffmann, F. G. , and R. J. Baker . 2003. Comparative phylogeography of short-tailed bats (Carollia: Phyllosto midae). Molecular Ecology, 12: 3403–3414. Google Scholar
  • 27. Ibáñez, C. , J. L. García-Mudarra , M. Ruedi , B. Stadelmann , and J. Juste . 2006. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterologica, 8: 277–297. Google Scholar
  • 28. INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE. 1999. International Code of Zoological Nomenclature, 4th edition. The International Trust for Zoological Nomen clature, London, 306 pp. Google Scholar
  • 29. Ivanova, N. V. , J. R. Dewaard , and P. D. Hebert . 2006. An inexpensive, automation friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6: 998–1002. Google Scholar
  • 30. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111–120. Google Scholar
  • 31. Lanave, C. , G. Preparata , C. Saccone , and G. Serio . 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20: 86–93. Google Scholar
  • 32. Larsen, R. J. , M. C. Knapp , H. H. Genoways , F. A. A. Khan , P. A. Larsen , D. E. Wilson , and R. J. Baker . 2012. Genetic diversity of neotropical Myotis (Chiroptera: Vespertilionidae) with an emphasis on South American species. PLoS ONE, 7: e46578. Google Scholar
  • 33. Lewis-Oritt, N. , C. A. Porter , and R. J. Baker . 2001. Molecular systematics of the Family Mormoopidae (Chiroptera) based on Cytochrome b and Recombination Activating Gene 2 sequences. Molecular Phylogenetics and Evolution, 20: 426–436. Google Scholar
  • 34. Librado, P. , and J. Rozas . 2009. DNA Sp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451–1452. Google Scholar
  • 35. Lim, B. K. , M. D. Engstrom , J. W. Bickham , and J. C. Patton . 2008. Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci from the four genetic transmission systems of mammals. Biological Journal of the Linnean Society, 93: 89–209. Google Scholar
  • 36. Linares, O. J. , and J. Ojasti . 1974. Una nueva subespecie del murcielago Pteronotus parnellii, en las cuevas de la Peninsula de Paraguana, Venezuela (Chiroptera: Mormoopidae). Boletin de la Sociedad Venezolana de Espeleologia, 5: 73–78. Google Scholar
  • 37. Lopera-Barrero, N. M. , J. A. Povh , R. P. Ribeiro , P. C. Gomes , C. B. Jacometo , and T. D. Silva-Lopes . 2008. Comparación de protocolos de extracción de ADN conmuestras de aleta y larva de peces: extracción modificada concloruro de sodio. Ciencia e Investigación Agraria, 35: 77–86. Google Scholar
  • 38. Mayer, F. , and O. Von Helversen . 2001. Cryptic diversity in European bats. Proceedings of the Royal Society of London, 268: 1825–1832. Google Scholar
  • 39. Morgan, G. S. , and N. Czaplewski . 2012. The evolutionary history of the Neotropical Chiroptera: the fossil record. Pp. 105–161, in Evolutionary history of bats: fossils, molecules, and morphology ( G. F. Gunnell and N. Simmons , eds.). Cambridge University Press, Cambridge, 560 pp. Google Scholar
  • 40. Naka, L. N. , C. L. Bechtoldt , L. M. P. Henriques , and R. T. Brumfield . 2012. The role of physical barriers in the location of avian suture zones in the Guiana Shield, northern Amazonia. The American Naturalist, 179(4): E115–E132. Google Scholar
  • 41. Noonan, B. P. , and P. Gaucher . 2005. Phylogeography and demography of Guianan harlequin toads (Atelopus): diversification within a refuge. Molecular Ecology, 14: 3017–3031. Google Scholar
  • 42. Noonan, B. P. , and P. Gaucher . 2006. Refugial isolation and secondary contact in the dyeing poison frog Dendrobates tinctorius. Molecular Ecology, 15: 4425–4435. Google Scholar
  • 43. Nunes A. , S. Marques-Aguiar , L. N. Saldanha , E. Silva , R. Silva R. , and A. Bezerra . 2005. New records on the geographic distribution of bat species in the Brazilian Amazonia. Mammalia, 69: 109–115. Google Scholar
  • 44. Parlos, J. A. , R. M. Timm , V. J. Swier , H. Zeballos , and R. J. Baker . 2014. Evaluation of paraphyletic assemblages within Lonchophyllinae, with description of a new tribe and genus. Occasional Papers, Museum of Texas Tech University, 320: 1–23. Google Scholar
  • 45. Patton, J. L. , and A. L. Gardner . 2008. Family Mormoopidae Saussure, 1860. Pp. 376–383, in Mammals of South America. Volume 1: Marsupials, xenarthrans, shrews, and bats ( A. L. Gardner , ed.). University of Chicago Press, Chicago, 669 pp. Google Scholar
  • 46. Pavan, A. C. , F. Martins , F. R. Santos , A. D. Ditchfield , and R. A. Redondo . 2011. Patterns of diversification in two species of short-tailed bats (Carollia Gray, 1838): the effects of historical fragmentation of Brazilian rainforests. Biological Journal of the Linnean Society, 102: 527–539. Google Scholar
  • 47. Pavan, A. C. , F. M. Martins , and J. S. Morgante . 2013. Evolutionary history of bulldog bats (genus Noctilio): recent diversification and the role of the Caribbean in Neotropical biogeography. Biological Journal of the Linnean Society, 108: 210–224. Google Scholar
  • 48. Pennington, R. T. , D. E. Prado , and C. A. Pendry . 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27: 261–273. Google Scholar
  • 49. Pennington, R. T. , M. Lavin, M. , D. E. Prado , C. A. Pendry , S. K. Pell , and C. A. Butterworth . 2004. Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philosophical Transactions of the Royal Society of London, 359B: 515–538. Google Scholar
  • 50. Posada, D. , and K. A. Crandall . 1998. Modeltest: testing the model of DNA susbstitution. Bioinformatics, 14: 817–818. Google Scholar
  • 51. Quijada-Mascareñas, J. A. , J. E. Ferguson , C. E. Pook , M. D. G. Salomao , R. S. Thorpe , and W. Wüster . 2007. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. Journal of Biogeography, 34: 1296–1312. Google Scholar
  • 52. Raghuram, H. , M. Jain , and R. Balakrishnan . 2014. Species and acoustic diversity of bats in a paleotropical wet evergreen forest in southern India. Current Science, 107: 631–641. Google Scholar
  • 53. Rodriguez, R. , J. L. Oliver , A. Marin , and J. R. Medina . 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142: 485–501. Google Scholar
  • 54. Ronquist, F. , M. Teslenko , P. Van Der Mark , D. L. Ayres , A. Darling , S. Höhna , B. Larget , L. Liu , M. A. Suchard , and J. P. Huelsenbeck . 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539–542. Google Scholar
  • 55. Shi, J. J. , and D. L. Rabosky . 2015. Speciation dynamics during the global radiation of extant bats. Evolution, 69: 1528–1545. Google Scholar
  • 56. Sikes, R. S. , and W. L. Gannon . 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 57. Simmons, N. B. 2005. Order Chiroptera. Pp. 312–529, in Mam mal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder , eds.). The Johns Hopkins University Press, Baltimore, 2142 pp. Google Scholar
  • 58. Smith, J. D. 1972. Systematics of the chiropteran family Mormoopidae. Miscellaneous Publications, Museum of Natural His tory, University of Kansas, 56: 1–132. Google Scholar
  • 59. Swofford, D. L. 2002. PAUP: Phylogenetic Analysis Using Parsimony (and other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. Google Scholar
  • 60. Tamura, K. , and M. Nei . 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512–526. Google Scholar
  • 61. Tamura, K. , G. Stecher , D. Peterson , A. Filipski , and S. Kumar . 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725–2729. Google Scholar
  • 62. Templeton, A. R. 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 7: 381–397. Google Scholar
  • 63. Van Den Bussche, R. A. , and S. E. Weyandt . 2003. Mitochondrial and nuclear DNA sequence data provide resolution to sister-group relationships within Pteronotus (Chiroptera: Mormoopidae). Acta Chiropterologica, 5: 1–13. Google Scholar
  • 64. Van Den Bussche, R. A. , S. R. Hoofer , and N. B. Simmons . 2002. Phylogenetic relationships of mormoopid bats using mitochondrial gene sequences and morphology. Journal of Mammalogy, 83: 40–48. Google Scholar
  • 65. Velazco, P. M. , and B. D. Patterson . 2013. Diversification of the yellow-shouldered bats, genus Sturnira (Chiroptera, Phyl lostomidae), in the New World Tropics. Molecular Phylogenetics and Evolution, 68: 683–698. Google Scholar
  • 66. Werneck, F. P. , G. C. Costa , G. R. Colli , D. E. Prado , and J. W. Sites, Jr . 2011. Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeo distribution modelling and palynological evidencegeb. Global Ecology and Biogeography, 20: 272–288. Google Scholar
  • 67. Werneck, F. P. , C. Nogueira , G. R. Colli , G. R. , J. W. Sites , and G. C. Costa . 2012. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography, 39: 1695–1706. Google Scholar
  • 68. Wuester, W. , J. E. Ferguson , J. A. Quijada-Mascareñas , C. E. Pook , M. D. G. Salomao , and R. S. Thorpe . 2005. Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology, 14: 1095–1108. Google Scholar
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.agro-15afdec6-277a-4a66-8695-08036f32ac10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.