Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |
Tytuł artykułu

A diet rich in menhaden oil has the hypolipidemic effect but increases plasma glucose and insulin levels in rats

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A composition of dietary fat considerably affects the metabolism of nutrients, especially high-fat diet is associated with various metabolic disorders, diabetes and cardiovascular diseases in humans. Studies on rodents are an established model to investigate the pathophysiology of excessive fat in diets, hence the aim of the study was to evaluate the effect of dietary fats different in composition on plasma lipids, glucose and insulin levels in non-genetically modified rats instead of genetic models of obesity or diabetes. Animals were fed purified low- or high-fat (12 and 40% energy from fat, respectively) diets containing the same fat sources – lard, sunflower oil or menhaden oil for six weeks. Feeding menhaden oil, both in low- and high-fat diets, resulted in decreased plasma triglyceride, total cholesterol and high-density lipoprotein cholesterol levels in comparison to diets composed of lard or sunflower oil. However, high-fat diet with menhaden oil caused an increase in plasma glucose and insulin levels, which resulted in the increased HOMA-IR (Homeostatic Model Assessment – Insulin Resistance) index in relation to low-fat diet with the same oil. The obtained results demonstrate that high menhaden oil intake has the hypolipidemic effect but can impair glucose homeostasis in non-genetically modified rats.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
28
Numer
1
Opis fizyczny
p.62-68,fig.,ref.
Twórcy
autor
  • Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
  • Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
  • Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
  • Department of Cell-to-Cell Communication, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
Bibliografia
  • Akinkuolie A.O., Ngwa J.S., Meigs J.B., Djoussé L., 2011. Omega-3 polyunsaturated fatty acid and insulin sensitivity: A metaanalysis of randomized controlled trials. Clin. Nutr. 30, 702–707, https://doi.org/10.1016/j.clnu.2011.08.013
  • Baum S.J., Kris-Etherton P.M., Willett W.C., Lichtenstein A.H., Rudel L.L., Maki K.C., Whelan J., Ramsden C.E., Block R.C., 2012. Fatty acids in cardiovascular health and disease: A comprehensive update. J. Clin. Lipidol. 6, 216–234, https://doi.org/10.1016/j.jacl.2012.04.077
  • Boucher J., Kleinridders A., Kahn C.R., 2014. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191, https://doi.org/10.1101/cshperspect.a009191
  • Buettner R., Schölmerich J., Bollheimer L.C., 2007. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15, 798–808, https://doi.org/10.1038/oby.2007.608
  • Cameron T., Ghosh S., 2013. A high omega-6 PUFA diet impairs hepatocyte insulin signalling during diet-induced obesity. Can. J. Diabetes 37, S65, https://doi.org/10.1016/j.jcjd.2013.08.195
  • Chen C., Yang Y., Yu X., Hu S., Shao S., 2017. Association between omega-3 fatty acids consumption and the risk of type 2 diabetes: A meta-analysis of cohort studies. J. Diabetes Investig. 8, 480–488, https://doi.org/10.1111/jdi.12614
  • Cohen G., Riahi Y., Sunda V., Deplano S., Chatgilialoglu C., Ferreri C., Kaiser N., Sasson S., 2013. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic. Biol. Med. 65, 978–987, https://doi.org/10.1016/j.freeradbiomed.2013.08.163
  • Deng X., Dong Q., Bridges D., Raghow R., Park E.A., Elam M.B., 2015. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP1c) via activation of AMP-activated kinase. Biochim. Biophys. Acta 1851, 1521–1529, https://doi.org/10.1016/j.bbalip.2015.08.007
  • Dziedzic B., Szemraj J., Bartkowiak J., Walczewska A., 2007. Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats. J. Neuroendocrinol. 19, 364–373, https://doi.org/10.1111/j.1365-2826.2007.01541.x
  • Gondim P.N., Rosa P.V., Okamura D., Silva V.D.O., Andrade E.F., Biihrer D.A., Pereira L.J., 2018. Benefits of fish oil consumption over other sources of lipids on metabolic parameters in obese rats. Nutrients 10, E65, https://doi.org/10.3390/nu10010065
  • Griffo E., Di Marino L., Patti L. et al., 2014. Test meals rich in marine long-chain n-3 polyunsaturated fatty acids increase postprandial chylomicron response. Nutr. Res. 34, 661–666, https://doi.org/10.1016/j.nutres.2014.07.005
  • Guillot N., Caillet E., LavilleM., Calzada C., LagardeM., Véricel E., 2009. Increasing intakes of the long-chain ω-3 docosahexaenoic acid: effects on platelet functions and redox status in healthy men. FASEB J. 23, 2909–2916, https://doi.org/10.1096/fj.09-133421
  • Hashimoto Y., Yamada K., Tsushima H., Miyazawa D., Mori M., Nishio K., Ohkubo T., Hibino H., Ohara N., Okuyama H., 2013. Three dissimilar high fat diets differentially regulate lipid and glucose metabolism in obesity-resistant Slc:Wistar/ST rats. Lipids 48, 803–815, https://doi.org/10.1007/s11745-013-3805-3
  • Holness M.J., Smith N.D., Greenwood G.K., Sugden M.C., 2004. Acute ω-3 fatty acid enrichment selectively reverses high-saturated fat feeding-induced insulin hypersecretion but does not improve peripheral insulin resistance. Diabetes 53, S166–S171, https://doi.org/10.2337/diabetes.53.2007.S166
  • Ikemoto S., Thompson K.S., Takahashi M., Itakura H., Lane M.D., Ezaki O., 1995. High fat diet-induced hyperglycemia: prevention by low level expression of a glucose transporter (GLUT4) minigene in transgenic mice. Proc. Natl. Acad. Sci. USA 92, 3096–3099, https://doi.org/10.1073/pnas.92.8.3096
  • Itsiopoulos C., Marx W., Mayr H.L., Tatucu-Babet O.A., Dash S.R., George E.S., Trakman G.L., Kelly J.T., Thomas C.J., Brazionis L., 2018. The role of omega-3 polyunsaturated fatty acid supplementation in the management of type 2 diabetes mellitus: A narrative review. J. Nutr. Intermed. Metabol. 14, 42–51, https://doi.org/10.1016/j.jnim.2018.02.002
  • Jump D.B., Tripathy S., Depner C.M., 2013. Fatty acid-regulated transcription factors in the liver. Annu. Rev. Nutr. 33, 249–269, https://doi.org/10.1146/annurev-nutr-071812-161139
  • Lanza I.R., Blachnio-Zabielska A., Johnson M.L., Schimke J.M., Jakaitis D.R., Lebrasseur N.K., Jensen M.D., Sreekumaran Nair K., Zabielski P., 2013. Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. Am. J. Physiol. Endocrinol. Metab. 304, E1391–E1403, https://doi.org/10.1152/ajpendo.00584.2012
  • Lee J.S., Pinnamaneni S.K., Eo S.J., Cho I.H., Pyo J.H., Kim C.K., Sinclair A.J., Febbraio M.A., Watt M.J., 2006. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J. Appl. Physiol. 100, 1467–1474, https://doi.org/10.1152/japplphysiol.01438.2005
  • Lionetti L., Mollica M.P., Donizzetti I. et al., 2014. High-lard and highfish-oil diets differ in their effects on function and dynamic behavior of rat hepatic mitochondria. PLoS ONE 24, e92753, https://doi.org/10.1371/journal.pone.0092753
  • Liu X., Xue Y., Liu C., Lou Q., Wang J., Yanagita T., Xue C., Wang Y., 2013. Eicosapentaenoic acid-enriched phospholipid ameliorates insulin resistance and lipid metabolism in dietinduced-obese mice. Lipids Health Dis. 12, 109, https://doi.org/10.1186/1476-511X-12-109
  • Morgado N., Rigotti A., Valenzuela A., 2005. Comparative effect of fish oil feeding and other dietary fatty acids on plasma lipoproteins, biliary lipids, and hepatic expression of proteins involved in reverse cholesterol transport in the rat. Ann. Nutr. Metab. 49, 397–406, https://doi.org/10.1159/000088935
  • Silva Figueiredo P., Carla Inada A., Marcelino G., Maiara Lopes Cardozo C., de Cássia Freitas K., de Cássia Avellaneda Guimarães R., Pereira de CastroA., Aragão do Nascimento V., Aiko HianeP., 2017. Fatty acids consumption: the role metabolic aspects involved in obesity and its associated disorders. Nutrients 9, 1158, https://doi.org/10.3390/nu9101158
  • Siri-Tarino P.W., Sun Q., Hu F.B., Krauss R.M., 2010. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr. Atheroscler. Rep. 12, 384–390, https://doi.org/10.1007/s11883-010-0131-6
  • Soulage C.O., Sardón Puig L., Soulère L., Zarrouki B., Guichardant M., Lagarde M., Pillon N.J., 2018. Skeletal muscle insulin resistance is induced by 4-hydroxy-2-hexenal, a by-product of n-3 fatty acid peroxidation. Diabetologia 61, 688–699, https://doi.org/10.1007/s00125-017-4528-4
  • Taouis M., Dagou C., Ster C., Durand G., Pinault M., Delarue J., 2002. N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am. J. Physiol. Endocrinol. Metab. 282, E664–E671, https://doi.org/10.1152/ajpendo.00320.2001
  • Tekeleselassie A.W., Rajion M.A., Goh Y.M., Moteshakeri M., Soleimani A.F, Ebrahimi M., 2014. High-fat diets rich in n-3 polyunsaturated fatty acids delay onset of insulin resistance in rats. Pak. J. Nutr. 13, 223–233, https://doi.org/10.3923/pjn.2014.223.233
  • Véricel E., Colas R., Calzada C., Lê Q.H., Feugier N., Cugnet C., Vidal H., Laville M., Moulin P., Lagarde M., 2015. Moderate oral supplementation with docosahexaenoic acid improves platelet function and oxidative stress in type 2 diabetic patients. Thromb. Haemost. 114, 289–296, https://doi.org/10.1160/TH14-12-1003
  • Wiedemann M.S.F., Wueest S., Item F., Schoenle E.J., Konrad D., 2013. Adipose tissue inflammation contributes to short-term high-fat diet-induced hepatic insulin resistance. Am. J. Physiol. Endocrinol. Metab. 305, E388–E395, https://doi.org/10.1152/ajpendo.00179.2013
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-14382fbf-a3ad-4954-92e0-a93ec6e5e430
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.