Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 54 | 1 |
Tytuł artykułu

Parametric proportional hazards model for mapping genomic imprinting of survival traits

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A number of imprinted genes have been observed in plants, animals and humans. They not only control growth and developmental traits, but may also be responsible for survival traits. Based on the Cox proportional hazards (PH) model, we constructed a general parametric model for dissecting genomic imprinting, in which a baseline hazard function is selectable for fitting the effects of imprinted quantitative trait loci (iQTL) genotypes on the survival curve. The expectation–maximisation (EM) algorithm is derived for solving the maximum likelihood estimates of iQTL parameters. The imprinting patterns of the detected iQTL are statistically tested under a series of null hypotheses. The Bayesian information criterion (BIC) model selection criterion is employed to choose an optimal baseline hazard function with maximum likelihood and parsimonious parameterisation. We applied the proposed approach to analyse the published data in an F2 population of mice and concluded that, among five commonly used survival distributions, the log-logistic distribution is the optimal baseline hazard function for the survival time of hyperoxic acute lung injury (HALI). Under this optimal model, five QTL were detected, among which four are imprinted in different imprinting patterns.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
54
Numer
1
Opis fizyczny
p.79–88,fig.,ref.
Twórcy
autor
  • Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
autor
autor
autor
autor
Bibliografia
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-13fe6380-62fe-4c6c-88de-635ed83e6a8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.