Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 1 |
Tytuł artykułu

Roles of apoplastic peroxidases, laccases, and lignification in the manganese tolerance of hyperaccumulator Phytolacca americana

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigated the response of Mn-hyperaccumulator Phytolacca americana L. to manganese excess as well as the relationships between lignin deposition in the plant’s leaves, peroxidase and laccase activities in the leaf apoplast, and Mn toxicity. The exceptionally high tolerance of P. americana to Mn, both in solution and in tissue, was confirmed. No visible brown spot was observed in the leaves of plants treated with B10,000 µM Mn for 10 days. Mn treatment significantly increased lignin content and laccase activity in the apoplastic washing fluid (AWF) of P. americana leaves. In contrast, an increase in the Mn supply was paralleled by a significant decrease in the concentration of total phenolic compounds (TPCs) and in water-soluble guaiacol peroxidase (SPOD) activity in leaf AWF. This result suggested that an increase in lignin deposition decreased the concentration of apoplastic TPCs that are available to generate potentially toxic intermediates by acting as peroxidase substrates. Thus, data of the present study indicate that lignin formation by laccase activities reduces Mn toxicity and increases Mn tolerance of P. americana by depressing SPOD-mediated formation of toxic intermediates from TPCs.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
34
Numer
1
Opis fizyczny
p.151-159,fig.,ref.
Twórcy
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
autor
  • Human Research Academy of Environmental Science, 410004 Changsha, People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
Bibliografia
  • Ali MB, Singh N, Shohael AM, Hahn EJ, Paek KY (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171(1):147–154
  • Bao W, O’Malley D, Whetten R, Sederoff R (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674
  • Blee K, Choi J, O’Connell A, Schuch W, Lewis N, Bolwell G (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64(1):163–176
  • Boojar M, Goodarzi F (2008) Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine. Ecotoxicol Environ Saf 71(3):692–699
  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72(1–2):248–254
  • Brown P, Graham R, Nicholas D (1984) The effects of manganese and nitrate supply on the levels of phenolics and lignin in young wheat plants. Plant Soil 81(3):437–440
  • Campbell MM, Ellis BE (1992) Fungal elicitor-mediated responses in pine cell-cultures. 2. Cell wall-bound phenolics. Phytochemistry 31(3):737–742
  • Chen E, Chen Y, Chen L, Liu Z (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol Biochem 40(5):439–444
  • de Varennes A, Carneiro J, Goss M (2001) Characterization of manganese toxicity in two species of annual medics. J Plant Nutr 24(12):1947–1955
  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52(3):253–266
  • Dou CM, Fu XP, Chen XC, Shi JY, Chen YX (2009) Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana. Plant Biol 11(5):664–670
  • Driouich A, Lainé A, Vian B, Faye L (1992) Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J 2(1):13–24
  • Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121(1):66–74
  • Fecht-Christoffers MM, Horst WJ (2005) Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris? J Plant Nutr Soil Sci 168(4):590–599
  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003a) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133(4):1935–1946
  • Fecht-Christoffers MM, Maier P, Horst WJ (2003b) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol Plant 117(2):237–244
  • Fecht-Christoffers MM, Fuhrs H, Braun HP, Horst WJ (2006) The role of hydrogen peroxide-producing and hydrogen peroxideconsuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol 140(4):1451–1463
  • González A, Steffen K, Lynch J (1998) Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol 118(2):493–504
  • Horst W (1988) The physiology of Mn toxicity. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer, London, pp 175–188
  • Horst WJ, Fecht-Christoffers M, Naumann A, Wissemeier AH, Maier P (1999) Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J Plant Nutr Soil Sci 162(3):263–274
  • Kärkönen A, Koutaniemi S, Mustonen M, Syrjänen K, Brunow G, Kilpeläinen I, Teeri T, Simola L (2002) Lignification related enzymes in Picea abies suspension cultures. Physiol Plant 114(3):343–353
  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227(4):867–881
  • Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27(3):605–615
  • Lagrimini L (1991) Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol 96(2):577
  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212(3):323–331
  • Lei Y, Korpelainen H, Li C (2007) Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere 68(4):686–694
  • Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N (2003) Downregulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J Plant Res 116(3):175–182
  • Lidon F, Barreiro M, Ramalho J (2004) Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol 161(11):1235–1244
  • Lin CC, Chen LM, Liu ZH (2005) Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci 168(3):855–861
  • Liu X, Peng K, Wang A, Lian C, Shen Z (2010) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78(9):1136–1141
  • Macfie S, Taylor G (1992) The effects of excess manganese on photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture. Physiol Plant 85(3):467–475
  • Maksimović JD, Bogdanović J, Maksimović V, Nikolic M (2007) Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J Plant Nutr Soil Sci 170(6):739–744
  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
  • Mika A, Minibayeva F, Beckett R, Luthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3(1–2):173–193
  • Mora M, Rosas A, Ribera A, Rengel Z (2009) Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 320(1):79–89
  • Moroni J, Scott B, Wratten N (2003) Differential tolerance of high manganese among rapeseed genotypes. Plant Soil 253(2):507–519
  • Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376
  • Önnerud H, Zhang L, Gellerstedt G, Henriksson G (2002) Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis I. Plant Cell 14(8):1953–1962
  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24(5):255–265
  • Peng K, Li X, Luo C, Shen Z (2006) Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. J Environ Sci Health, Part A Toxic/Hazard Subst Environ Eng 41(1):65–76
  • Peng K, Luo C, You W, Lian C, Li X, Shen Z (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca americana L. J Hazard Mater 154(1–3):674–681
  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol 106(1):53–60
  • Ramachandran V, D’Souza T (1997) Extractable zinc and manganese as related to applied cadmium in contrasting Indian soils. Chem Spec Bioavail 9(4):131–144
  • Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet A, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar. Eur J Biochem 259:485–495
  • Sarkar D, Pandey SK, Sud KC, Chanemougasoundharam A (2004) In vitro characterization of manganese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum L.). Plant Sci 167(5):977–986
  • Sato Y, Wuli B, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114(2):147–155
  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365
  • Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66(13):1551–1559
  • Shi Q, Zhu Z, Xu M, Qian Q, Yu J (2006) Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities. Environ Exp Bot 58(1–3):197–205
  • Singleton V, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16(3):144–158
  • Srivastava S, Dubey R (2010) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16
  • Sterjiades R, Dean J, Eriksson K (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99(3):1162–1168
  • Sterjiades R, Dean J, Gamble G, Himmelsbach D, Eriksson K (1993) Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures. Planta 190(1): 75–87
  • Uraguchi S, Watanabe I, Yoshitomi A, Kiyono M, Kuno K (2006) Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. J Exp Bot 57(12):2955–2965
  • van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142(3):1127–1147
  • Wissemeier AH, Horst WJ (1992) Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 143(2):299–309
  • Wong M, Lau W, Li S, Tang C (1983) Root growth of two grass species on iron ore tailings at elevated levels of manganese, iron, and copper. Environ Res 30(1):26–33
  • Xue S, Chen Y, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399
  • Yang Y, Cheng L, Liu Z (2007) Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci 172(3):632–639
  • Zheljazkov VD, Nielsen NE (1996) Effect of heavy metals on peppermint and cornmint. Plant Soil 178(1):59–66
  • Zheng X, van Huystee RB (1992) Peroxidase-regulated elongation of segments from peanuts hypocotyls. Plant Sci 81(1):47–56
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-12f4a49a-12c7-4bc1-8790-f37398704c0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.