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Abstract
Objective. The aim of the study is to verify whether the electronic nose system – an array of 17 gas sensors with a signal 
analysis system – is a useful tool for the classification and preliminary assessment of the quality of drainage water.  
Materials and Method. Water samples for analysis were collected in the Park Ludowy (People’s Park), located next to the 
Bystrzyca River, near the city center of Lublin in eastern Poland. Drainage water was sampled at 4 different points. Samples of 
synthetic air and river water taken from the Bystrzyca River were used for reference. All water samples were tested using an 
MOS gas sensor array. In order to assess how the e-nose performed in screening and discriminating/preliminarily classifying 
and grouping samples, their properties were tested using reference methods and assessing surface water quality. The PCA 
method, Kohonen’s SOM with superimposed cluster boundaries by McQuitty’s method, random forest and MLP neural 
network were used to visualize and classify the multivariate data.   
Results. The visualization and multidimensionality reduction methods (PCA and SOM) did not enable to clearly distinguish 
the observations from different drainage water samples. The supervised random forest and MLP methods coped with the 
classification of samples much better, achieving 84.3% and 87.6% correct classifications on the test set, respectively.  
Conclusions. Statistical analysis of the chemical properties of the samples showed that even reference tests are unable to 
clearly distinguish the samples in terms of a single parameter. However, the e-nose method makes it possible to distinguish 
these samples from a reference sample derived from river water and a clean air sample.
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INTRODUCTION AND OBJECTIVE

Nowadays, increased emissions of harmful substances and 
the need to monitor them have influenced the intensive 
development of gas sensors and the emergence of so-
called electronic noses (e-noses), i.e. devices for detection 
a variety of volatile organic compounds [1–3]. They have 
found application in the cosmetics, food, medicine and 
petrochemical industries, as well as in wastewater treatment 
and environmental analysis [4, 5] where e-noses are used 
alone or in combination with other e-senses, i.e. e-eye and 
e-tongue [6, 7].

The electronic nose, which consists of gas sensors, hardware 
and statistical models [8] in the case of drainage water, can 
be used for screening in the initial analysis of samples and 
their classification. This analysis enables to quickly check if 
there is a significant change in the parameters of the sample, 
and if there is no such change, it allows discontinuation of 
the testing of chemical indicators of pollution. Testing for 
chemical contamination properties/indicators is labour-

intensive and costly, often generating waste that requires 
disposal and a skilled person to perform it. In contrast, 
operation of the e-nose is quick, does not require expenditures 
on reagents to perform each measurement, nor people with 
extensive laboratory experience and chemical training.

For the purposes of this study, it was assumed that it is 
possible to study the quality of the environment, including 
surface water, which includes water from draining wetlands 
and swamps that occur in both urban and rural areas, based 
on electronic sensing readings. In rural areas, drainage 
systems have often been used to expand farmland. The aim 
of the study was to verify whether the electronic nose system 
– an array of 17 gas sensors with a signal analysis system – is 
a useful tool for the classification and preliminary assessment 
of the quality of drainage water. This is particularly important 
due to the fact that drainage water discharged from intensively 
fertilized agricultural fields can cause eutrophication of 
surface water. Such waters can also enter livestock watering 
places at collective drainage ditches located in meadows and 
pastures. Thus, rapid, inexpensive and efficient detection of 
situations where the water in drains or the river is significantly 
different from the accepted level (pattern), which suggests a 
change in its quality, i.e. an increase in the level of pollution, 
necessitating taking remedial action and therefore prevent 
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the degradation of environmental quality and the spreads of 
animal and human diseases.

MATERIALS AND METHOD

Sampling and data description. Water samples for analysis 
were collected in Park Ludowy (People’s Park) located near 
the city centre in Lublin, easstern Poland. The location makes 
this park a component of the city’s main ecological corridor, 
positively affecting the biodiversity of invertebrates as well 
as birds and small mammals. There is a drainage system in 
the area of the park, built to eliminate swampland and lower 
the level of groundwater occurrence. The drainage ditches 
discharge the collected water into the Bystrzyca River. The 
drainage water from the Park Ludowy was sampled at four 
different points – the first was taken behind the dyke, at the 
point where the drainage flow rises to the surface, and the last 
at the end of the drainage in the park. The other two samples 
were taken at equal distances, between the aforementioned 
locations. Samples of both drainage and river water were 
taken into glass bottles, which were filled to capacity and 
capped below the water surface. All water samples were then 
tested using a MOS gas sensor array. Samples of synthetic 
air and river water taken from the Bystrzyca River (also 
collected at the river near the Park Ludowy, five meters 
before discharge of drainage water from the park) were used 
for reference.

The measurements were conducted using a gas sensor 
array comprising 17 Figaro MOS sensors (TGS2600-B00, 
TGS2602-B00, TGS2610-D00, TGS2611-E00, TGS2620-C00, 
TGS4161, TGS2444, TGS2442-B02, TGS800, TGS825-A00, 
TGS813-A00, TGS821, TGS823-A00, TGS812, TGS830, 
TGS832-A00, TGS2106), outlined in earlier studies 
and conducted by a team from the Lublin University of 
Technology in Lublin [9, 10]. The process involved a three-to-
five configuration for each port, consisting of three minutes 
dedicated to flushing the sensors with synthetic air, followed 
by five minutes for analysis of the mixture.

The data obtained consisted of 1,191 observations with 17 
explanatory variables that were measurements from the gas 
sensor array, and one variable with six levels of Air, 1, 2, 3 
and 4, and Water. Air denotes a reference sample of clean air; 
levels 1 – 4 denote drainage water samples taken in different 
parts of the Park Ludowy before being discharged into the 
Bystrzyca River, while Water denotes a sample of river water 
taken directly from the Bystrzyca River.

Reference tests with conventional methods were carried 
out using equipment: TOC-LCSH/CSN Shimadzu – TN, 
IC, TC, TOC (application note of the device); DR 6000, 
HACH Lange, USA – N-NO3, N-NO2, P-PO4 (LCK tests), 
N-NH4 (Hach method 8038), COD (predefined method), 
TSS (predefined method); Waterproof TN-100 Turbidimeter, 
EUTECH INSTRUMENTS, Singapore – turbidity (predefined 
method); CPC-501, ELMETRON, Poland – pH (predefined 
method); Orion VerseStar Thermo Scientific – conductivity 
(predefined method).

Elaboration of research results. The Principal Component 
Analysis method (PCA) was used for dimension reduction 
and data visualization. Another method used to visualize 
the data on a two-dimensional plane was a self-organizing 
Kohonen map, on which the boundaries of the clusters 

determined by the unsupervised method were superimposed. 
A random forest and a neural network with a single hidden 
layer were selected to classify objects by supervised methods 
in order to increase the quality of classification and compare 
their accuracy.

The PCA method independently presented by Pearson 
and Hotelling [11, 12] is a technique that seeks to represent 
the original data from a matrix X with n variables in a new 
low-dimensional space of variables. These variables, called 
principal components, are orthogonal to each other, and are 
consecutive columns of a matrix Y in the following form

Yi = γi
T(X – μ),

where i ∈ {1,2, ... ,n}, μ is the vector of mean variables of the 
set X, while γi is the i-th column of the orthogonal matrix Γ. 
This matrix is determined by the relation

 Λ = ΓTΣΓ, (1)

where Σ is the covariance matrix of Χ, while Λ is the 
diagonal matrix. If the Σ matrix is positive-definite, then 
for the eigenvalues of the Λ there is λ1 ≥ λ2≥ ... λn≥0 [13]. 
Then, due to relation (1) the eigenvalues of the Λ matrix are 
also the eigenvalues of the covariance matrix Σ, therefore 
they represent the percentage of explained variance by the 
subsequent principal components.

Self-organizing maps have been described by Kohonen 
[14] and are one type of unsupervised neural network. Such 
a map is formed by a one- or two-dimensional grid of l 
neurons with a rectangular or hexagonal topology. At the 
beginning of the algorithm’s operation, neurons are assigned, 
usually randomly, n-dimensional prototypes (weights) 
wj = [wj1,wj2, ... ,wjn] for j ∈ {1,2,...,l}. In the competition 
process, a winning neuron (Best Matching Unit) is found 
for observation x from the dataset using the function

c(x) = arg min ||x – wj||,

where || . || is the selected norm [15]. A neighborhood function 
is also determined, which is the distance between the i-th 
neuron and the winning neuron for observation x. The most 
commonly chosen are a Gaussian function or, as in the case 
of the current study, a neighborhood bubble function in the 
form of

hi,c(x)(t) = { 1, ||ri – rc(x)|| ≤ σ(t),
                                           0,     otherwise,

where rk is the position of the k-th neuron measured in the 
discrete output space [16], and σ is a decreasing function of 
the neighborhood radius. Then, at step t the neuron weights 
are updated for the next training steps

wi(t + 1) = wi(t) + η(t) · hi,c(x)(t) · (x(t) – wj(t)),

where η is a function of the learning rate [15].
Hierarchical cluster analysis is another unsupervised 

method used in an agglomerative approach, which relies 
on the fact that at the beginning, each observation forms a 
one-element cluster, which successively combine until all the 
data are in one cluster. There are a number of agglomeration 
methods that differ in their methods of binding. For this 
purpose, the Weighted Average linkage McQuitty method 

j
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(WPGMA) was applied where, in each step, the 2 closest k  
and l clusters are combined in k ∪ l. The distance between 
cluster k ∪ l and m is determined as the average of the 
distances between clusters k and l, as well as l and m clusters

d(k ∪ l, m) =  d(k, l) + d(l, m) ,
                                                              2
where d is the distance in the chosen metric. In this case, the 
Euclidean distance was used [17].

The random forest presented by Breiman [18], among 
others, is a supervised machine learning algorithm based on 
training a fixed number (m) of decision trees. For the k-th 
tree, where 1 ≤ k ≤ m a p-element sample is drawn with return, 
based on which the tree is trained. While building the tree, at 
each split node, v explanatory variables are randomly drawn 
(v < n, where n is the number of predictors), from which 
the best variable is selected to make the split. In the case 
of a random forest used to classify objects into appropriate 
classes, each decision tree classifies observations based on 
its own splitting rules into one class. The one into which the 
object under consideration has been classified most often 
becomes the observation class predicted by the random 
forest [19].

One-way neural network with one hidden layer is a type 
of MLP (MultiLayer Perceptron) network with the simplest 
structure. The network to classify objects into  classes has 
the following structure:

 – the input layer receives data from n predictors;
 – the hidden layer has a total number (H) of neurons;
 – in the output layer there are N neurons, to which the 
probabilities of belonging to each class are passed.

The probability of each class is predicted as a linear 
combination of signals from H hidden neurons, which 
have values in the interval [0,1], which is then transformed 
using the softmax function. In this way, the values of the 
probabilities in the output layer add up to 1 and have the 
following form:

where fil(x) is the prediction of the probability of occurrence 
of the l-th class for i-th observation before applying the 
transformation function. Optimization of the parameter 
coefficients in such a network is done by minimizing the 
following equation:

where s is the sample size, while yil is the index of the 
occurrence of the l-th class for i-th observation [20].

Analysis, data processing and plotting were performed 
in the statistical computing system R version 4.4.0 [21]. 
Using the kohonen package [22], Kohonen’s self-organizing 
map was  trained and plotted, using the functions of 
the  tidymodels  library [23], supervised models were 
trained,  and other graphs developed using the tidyverse 
package [24].

RESULTS AND DISCUSSION

Figure 1 shows a visualization of the multivariate data 
obtained from the gas sensor array using the PCA method on a 
two-dimensional and three-dimensional plane. Observations 
from different samples are marked with different colours in 
the graph. The first two principal components explain 47% of 
the variance in the data set, while the first three explain 53.6%. 
The ranges of variation of the variables denoting the first three 
principal components are small. In the two-dimensional 
graph, however, one can see a prominent separated cluster 
of a large number of observations from the reference air 
sample (marked in green), with single observations from 
the drainage water samples. In addition, a cluster of Sample 
1 taken from the drainages is separated in the lower right 
corner of the graph. The cluster of observations from the 
air samples and the point clouds from the drainage water 
and river water samples are located on opposite sides of the 
graph. In contrast, the three-dimensional graph shows that 
the observations from the different types of samples are 
arranged in vertical stripes. The data points from the drains 
are located in the point cloud between the clusters of clean 
air and river water observations.

Adding more principal components, although impossible 
to visualize, will not be optimal. This fact can be seen in the 
scatter plot in Figure 2. It can be seen that from the third 
principal component onward, the percentage of explained 
variance by subsequent components remains almost the 
same. Another drop occurs at the tenth component, which is 
an insufficient reduction in dimensionality for 17 explanatory 
variables.

fil(x) = efil(x)·(∑efil(x))N

l=1

*
−1

,

Figure 1. Data visualization using the PCA method in two-dimensional (left) and three-dimensional (right) space

ΣΣ(yil
 – fil(x))2,

l=1 i=1

N s
*
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The PCA method was used to represent the considered 
observations on a plane or low-dimensional space, while the 
self-organizing Kohonen map was used to visually represent 
their similarity by means of their distribution in neurons. 
Figure 3 shows a visualization of a self-organizing Kohonen 
map of 15x15 neurons in a hexagonal topology, with bubble 
neighbourhood function. The figure on the left indicates the 
assignment of the original points to each neuron of the map. 
Again, it can be seen that the observations from the clean air 
sample cluster in the neurons located in the lower left corner 
of the map. The neurons in the upper left corner of the map 
contained a large group of observations originating from 
the first drainage water sample. The remaining observations 
do not group in clusters on the Kohonen map that can be 
distinguished by sample type. An unsupervised method 
was used to assign observations to clusters that are as 
homogeneous as possible within a group. The figure to the 
right shows the boundaries of the six clusters found using 
hierarchical cluster analysis using the McQuitty method 
(WPMA). Data were assigned to six clusters to represent 

sample types. Thus, it can be seen that the largest, but also 
the most diverse clusters are four and five, which contain 
observations from drainage water samples. The smallest 
clusters are numbered 1 and 3, but they do not contain 
samples that belong to a single type. The most homogeneous 
in terms of sample type are cluster 2, whose neurons contain 
observations from clean air samples, and cluster 6 with 
observations from drainage water sample 1.

The unsupervised method, when adopting the division of 
the set into 6 clusters, is not able to extract heterogeneous 
clusters, which can also be seen when applying the same 
method for a smaller number of clusters in Figure 4. This is 
due to the fact that many neurons contain more than one 
type of sample. When the number of groups is reduced, the 
largest, most heterogeneous clusters merge into one.

Since unsupervised methods did not yield satisfactory 
results and did not allow dividing observations into samples 
heterogeneous with respect to water quality, supervised 
methods were used. For this purpose, the analyzed data were 
divided into a training set and a test set in a ratio of 3:1. The 
selection of hyperparameters of the models was performed 
by means of a five-fold cross-check.

The random forest model was trained using 500 decision 
trees, the mtry and min_n parameters were selected based 
on the tuning of hyperparameters. The mtry parameter 
denotes the number of random predictors at each node, while 
min_n corresponds to the minimum number of observations 
that are required for further node partitioning. The grid of 
tested hyperparameters consisted of the values rearranged 
in Table 1.

Table 1. Results of random forest hyperparameters tuning

Parameter Tested values Best

mtry 1, 5, 10, 11, 15 5

min_n 7, 15, 18, 26, 39 7

Figure 2. Scree plot showing the percentage of explained variance by each 
principal component of the PCA method

Figure 3. Self-organizing Kohonen map – mapped points from different samples (left), boundaries of 6-clusters determined by McQuitty 
method superimposed on the map (right)

Figure 4. Boundaries of 5 (left) and 3 (right) clusters determined by the McQuitty method superimposed on the Kohonen map
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The best of the models turned out to be a random forest 
trained with mtry = 5 and min_n = 7 parameters. Figure 5 
shows a contingency table comparing the true and model-
predicted labels, as well as ROC-AUC curves for each level of 
the explanatory variable on the test set. In both graphs it can 
be seen that the model best classifies the observations from 
the clean air sample, as each of the observations was classified 
into this type of sample. The observations from sample 1 were 
also mostly matched to the correct class, while the model 
did worst in classifying the river water sample and the four 
drainage water samples. The random forest model on the test 
set achieved 84.3% of correct classifications.

Another model trained was a one-way MLP neural network 
with one hidden layer. The tuned parameters included 
hidden_units, epochs and penalty. The average accuracy 

results with 5-fold cross-validation for each of the tested 
sets of hyperparameters are shown in Figure 6. The best 
average classification accuracy was achieved for 20 neurons 
in the hidden layer, 300 epochs of network training and 
regularization at the 0.01 level.

Figure 7 shows the contingency matrix of the true and 
model-predicted values of the sample variable for the test 
data,  as well as the ROC-AUC curves for each level of 
this  variable. Again, as in the case of the random forest, 
the neural network model performed well in classifying 
observations from the clean air sample and Sample 1 of 
drainage water. Despite the errors in classifying river 
water, there is a noticeable improvement in the quality of 
classification for the test data, as the model achieved an 
accuracy of 87.6%.

Figure 5. Contingency matrix (left) and ROC-AUC curves (right) for the test data in the random forest model

Figure 6. Accuracy of the single-layer neural network when tuning its hyperparameters on the learning set
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In order to assess how the e-nose performed in screening 
and discriminating/preliminarily classifying and grouping 
samples, their properties were tested using reference methods 
used for analyzing and assessing surface water quality – 
conductivity [µS], pH, content of P-PO4, N-NH4, N-NO3, 
N-NO2, [mg/l], total suspended solids [mg/l], total nitrogen 
TN [mg/l], total carbon TC [mg/l], inorganic carbon IC 
[mg/l], turbidity [NTU], chemical oxygen demand COD 
[mg/l] and total organic carbon TOC [mg/l]. The results 
obtained [25] showed that there was a high correlation 
between the readings from the gas sensor arrays and some 
of the chemical parameters studied, i.e. COD, pH, N-NO3, 
N-NO2. However, the situation in the cited study was simple 
insofar as the differences in the level of contamination of the 
samples tested were large.

Analyzing the values of pollution indicators, it can be 
concluded that the COD parameter values oscillated within 
25 [mg/l], being lower than the averages for a river of this 
type [26]. The COD parameter values of drainage waters 
were much lower than for rainwater, within the range of 
10–25 [mg/l] [26]. Thus, it can be concluded that there was 
an elevated COD value in the river compared to the drainage 
water. In contrast, the opposite was observed for the carbon 
content TC, with higher contents in the drainage water 
samples compared to the river. Total suspended solids and 
turbidity were highest in the river samples.

A non-parametric Kruskal-Wallis test comparing the 
distributions of the variables under study for each type 
of sample yielded a p-value of 0.009. This means that the 
hypothesis that the multivariate distributions are identical for 
all types of samples was rejected. On the other hand, Dunn’s 
paired difference tests, as amended by Bonferonni, showed 
that there were significant differences between:
•	 Samples 1 and 3 in the distribution of N-NH4 measurements 

(p-value=0.008);
•	 Samples 3 and 4 in the distribution of N-NO3 measurements 

(p-value=0.008);
•	 Sample 1 and river water in the distribution of measurements 

of conductivity (p-value=0.008), TC (p-value=0.014) and 
TOC (p-value=0.010);

•	 Sample 2 and river water in the distributions of 
measurements of P-PO4 (p-value=0.008), suspended solids 
(p-value=0.006) and turbidity (p-value=0.008);

•	 Sample 3 and river water in the distributions of 
measurements of pH (p-value=0.008), TN (p-value=0.04), 
N-NO2 (p-value=0.008), COD (p-value=0.008).

Thus, only in the case of the amount of inorganic carbon 
(IC) was there no basis for rejecting the hypothesis that there 

were no differences between groups determined by sample 
type. For the other parameters, there were differences, but 
for each of the variables there were differences only for one 
pair of sample types.

CONCLUSIONS

On the basis of the analysis, it can be concluded that the 
visualization and multidimensionality reduction methods 
did not enable to clearly distinguish observations from 
different drainage water samples. Also, the distribution of 
points in the neurons of the Kohonen map and the distinction 
of boundaries on the map established by hierarchical 
cluster analysis using McQuitty’s method, did not allow 
distinguishing heterogeneous clusters. The supervised 
random forest and MLP methods coped with the classification 
of samples much better, achieving 84.3% and 87.6% correct 
classifications on the test set, respectively. Across all sample 
types, correct classifications were, respectively: 90.5% and 
88.9% for Sample 1; 84.1% and 90.5% for Sample 2; 84.4% 
and 82.8% for Sample 3; 72.1% and 88.4% for Sample 4; 72.7% 
and 75.8% for the river water sample; 100% for the clean air 
sample for both models.

Statistical analysis of measurements pertaining to the 
chemical properties of the samples enabled the conclusion 
that even time- and cost-consuming reference tests are 
unable to distinguish samples in terms of a single parameter. 
Thus, although the unsupervised methods did not provide 
a basis for a clear division of the collection into intra-group 
homogeneous clusters, with the help of the supervised 
methods used, it was possible to achieve a level of accuracy 
that allowed the initial differentiation of samples from 
drainage waters. The method also makes it possible to 
distinguish these samples from a reference sample derived 
from river water and a clean air sample. Therefore, the use 
of an electronic nose can improve the monitoring of surface 
runoff from drainage waters and the surface waters of the 
receiver, which in the case described were river waters. This 
method can be used in practice for screening the quality of 
the aquatic environment, e.g. changes over time at the same 
point or at the same time at neighboring points.

The next step will be the search and selection of more 
efficient clustering and classification methods and, in parallel, 
how these described methods perform for cases of other types 
of contaminated water.

Figure 7. Contingency matrix (left) and ROC-AUC curves (right) for the test data in the single-layer neural network model
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