Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Thirteen individuals of Noack's round-leaf bat, Hipposideros aff. ruber, were radio-tracked for 38 nights in an agricultural landscape in Kwamang, Ashanti Region, Ghana. Local convex hulls were used to estimate home range sizes of the bats. Based on 1,192 fixes, the mean (± SD) home range size was 36 ha ± 35 ha. Individual home range size ranged from six to 95 ha and frequently overlapped among individuals. The foraging area covered 50% of the home range while the core area formed 2%. The mean maximum foraging distance was 1.1 km, with individual distances up to 2.6 km, suggesting Hipposideros aff. ruber is capable of covering relatively long distances. Male bats returned to the cave more often than females during the night. Although the cave was the main roost, each bat also had individual night roosts on trees.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.239-247,fig.,ref.
Twórcy
autor
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
autor
- Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Kvetna 8, 603 65 Brno, Czech Republic
autor
- Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
autor
- Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
autor
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
autor
- Institute of Virology, University of Bonn Medical Centre, Bonn 53127, Germany
autor
- Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Panama
autor
- Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Panama
autor
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Bibliografia
- 1. Aldridge, H. D. J. N. , and I. L. Rautenbach . 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
- 2. Amichai, E. , E. Levin , N. Kronfeld-Schor , U. Roll , and Y. Yom-Tov . 2013. Natural history, physiology and energetic strategies of Asellia tridens (Chiroptera). Mammalian Biology, 78: 94–103. Google Scholar
- 3. Anthony, E. L. P. 1988. Age determination in bats. Pp. 47–58, in Ecological and behavioral methods for the study of bats ( T. H. Kunz , ed.). Smithsonian Institution Press, Washington, D.C., xxii + 533 pp. Google Scholar
- 4. Baldwin, H. J. , P. Vallo , M. G. Gardner , C. Drosten , M. Tschapka , and A. J. Stow . 2014. Isolation and characterization of 11 novel microsatellite loci in a West African leafnosed bat, Hipposideros aff. ruber. BMC Research Notes, 7: 607. Google Scholar
- 5. Bell, G. 1987. Evidence of a harem social system in Hipposideros caffer (Chiroptera: Hipposideridae) in Zimbabwe. Journal of Tropical Ecology, 3: 87–90. Google Scholar
- 6. Bell, G. , and M. Fenton . 1983. Echolocation and foraging behavior of Hipposideros ruber (Chiroptera). Journal of Ac oust ical Society of America, 74: S32–S32. Google Scholar
- 7. Bonaccorso, F. J. , J. R. Winkelmann , and D. G. P. Byrnes . 2005. Home range, territoriality, and flight time budgets in the black-bellied fruit bat, Melonycteris melanops (Pteropodidae). Journal of Mammalogy, 86: 931–936. Google Scholar
- 8. Bontadina, F. , H. Schoeld , and B. Naef-Daenzer . 2002. Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland. Journal of Zoology (London), 258: 281–290. Google Scholar
- 9. Burt, W. H. 1943. Territoriality and home range concepts as applied to mammals. Journal of Mammalogy, 24: 346–352. Google Scholar
- 10. Campos, F. A. , M. L. Bergstrom , A. Childers , J. D. Hogan , K. M. Jack , A. D. Melin , K. N. Mosdossy , M. S. Myers , N. A. Parr , and E. Sargeant . 2014. Drivers of home range characteristics across spatiotemporal scales in a Neotropical primate, Cebus capucinus. Animal Behaviour, 91: 93–109. Google Scholar
- 11. Dechmann, D. K. , S. L. Heucke , L. Giuggioli , K. Safi , C. C. Voigt , and M. Wikelski . 2009. Experimental evidence for group hunting via eavesdropping in echolocating bats. Proceedings of the Royal Society, 276B: 2721–2728. Google Scholar
- 12. Dechmann, D. K. N. , B. Kranstauber , D. Gibbs , and M. Wikelski . 2010. Group hunting — a reason for sociality in molossid bats? PLoS ONE, 5: e9012. Google Scholar
- 13. Dunning, D. , and M. Kruger . 1996. Predation upon moths by free-foraging Hipposideros caffer. Journal of Mammalogy, 77: 708–715. Google Scholar
- 14. Elmore, L. W. , D. A. Miller , and F. J. Vilella . 2005. Foraging area size and habitat use by red bats (Lasiurus borealis) in an intensively managed pine landscape in Mississippi. The American Midland Naturalist, 153: 405–417. Google Scholar
- 15. Entwistle, A. , P. Racey , and J. Speakman . 2000. Social and population structure of a gleaning bat, Plecotus auritus. Journal of Zoology (London), 252: 11–17. Google Scholar
- 16. Fenton, B. M. 1987. Foraging and habitat use by Nycteris grandis (Chiroptera: Nycteridae) in Zimbabwe. Journal of Zoology, 211: 709–716. Google Scholar
- 17. Getz, W. M. , and C. C. Wilmers . 2004. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography, 27: 489–505. Google Scholar
- 18. Getz, W. M. , S. Fortmann-Roe , P. C. Cross , A. J. Lyons , S. J. Ryana , and C. C. Wilmers . 2007. LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE, 2: e207. Google Scholar
- 19. Gschweng, M. , E. K. V. Kalko , P. Berthold , W. Fiedler , and J. Fahr . 2012. Multi-temporal distribution modelling with satellite tracking data: predicting responses of a long-distance migrant to changing environmental conditions. Journal of Applied Ecology, 49: 803–813. Google Scholar
- 20. Hamilton, W. J. , and K. E. F. Watt . 1970. Refuging. Annual Review of Ecology and Systematics, 1: 263–286. Google Scholar
- 21. Happold, M. 2013. Hipposideros ruber Noak's leaf-nosed bat. Pp. 393–395, in Mammals of Africa. Volume IV: Hedgehogs, shrews and bats ( M. Happold and D. Happold , eds.). Bloomsbury Publishing, London, 800 pp. Google Scholar
- 22. Harestad, A. S. , and F. L. Bunnell . 1979. Home range and body weight — a reevaluation. Ecological Society of America, 60: 389–402. Google Scholar
- 23. Henry, M. , and E. K. V. Kalko . 2007. Foraging strategy and breeding constraint of Rhinophylla pumilio (Phyllosto midae) in the Amazon lowlands. Journal of Mammalogy, 88: 81–93. Google Scholar
- 24. Henry, M. , W. D. Thomas , R. Vaudry , and M. Carrier . 2002. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). Journal of Mammal ogy, 83: 767–774. Google Scholar
- 25. Jacobs, D. S. , and R. M. R. Barclay . 2009. Niche differentiation in two sympatric sibling bat species, Scotophilus dinganii and Scotophilus mhlanganii. Journal of Mammalogy, 90: 879–887. Google Scholar
- 26. Jones, G. , P. L. Duverge , and R. D. Ransome . 1995. Con servation biology of an endangered species: field study of the greater horse-shoe bats. In Ecology, evolution and behaviour of bats ( P. A. Racey and S. M. Swift , eds.). Symposium of Zoological Society of London, 67: 309–324. Google Scholar
- 27. Kelt, D. A. , and D. H. Van Vuren . 2001. The ecology and macroecology of mammalian home range area. American Naturalist, 157: 637–645. Google Scholar
- 28. Lindstedt, S. L. , J. B. Miller , and B. W. Steven . 1986. Home range, time and body size in mammals. Ecology, 67: 413–418. Google Scholar
- 29. Lockwood, R. , J. P. Swaddle , and J. M. V. Rayner . 1998. Avian wingtip shape reconsidered: Wingtip shape indices and morphological adaptations to migration. Journal of Avian Biology, 29: 273–292. Google Scholar
- 30. Mcnab, B. K. 1963. Bioenergetics and the determination of home range size. The American Naturalist, 97: 133–140. Google Scholar
- 31. Meer, J. V. D. 2006. Metabolic theories in ecology. Trends in Ecology and Evolution, 21: 136–140. Google Scholar
- 32. Mitchell, M. S. , and R. A. Powell . 2003. Linking fitness landscapes with the behavior and distribution of animals. Pp. 93–124, in Landscape ecology and resource management: linking theory with practice ( J. A. Bissonette and I. Storch , eds.). Island Press, Washington, D.C.. 463 pp. Google Scholar
- 33. Monadjem, A. , A. Reside , J. Cornut , and M. R. Perrin . 2009. Roost selection and home range of an African insectivorous bat Nycteris thebaica (Chiroptera, Nycteridae). Mammalia, 73: 353–359. Google Scholar
- 34. Monadjem, A. , P. J. Taylor , F. P. D. Cotterill , and M. C. Schoeman . 2010a. Bats of Southern Africa: a biogeographic and taxonomic synthesis. University of the Witwatersrand, Johannesburg, xii + 596 pp. Google Scholar
- 35. Monadjem, A. , T. Raabe , B. Dickerson , N. Silvy , and R. Mccleery . 2010b. Roost use by two sympatric species of Scotophilus in a natural environment. South African Journal of Wildlife Research, 40: 73–76. Google Scholar
- 36. Monadjem, A. , L. Richards , P. J. Taylor , C. Denys , A. Dower , and S. Stoffberg . 2013. Diversity of Hipposideridae in the Mount Nimba massif, West Africa, and the taxonomic status of Hipposideros lamottei. Acta Chiropterologica, 15: 341–352. Google Scholar
- 37. Morellet, N. , C. Bonenfant , L. Borger , F. Ossi , F. Cagnacci , M. Heurich , P. Kjellander , J. D. Linnell , S. Nicoloso , and P. Sustr . 2013. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. Journal of Animal Ecology, 82: 1326–1339. Google Scholar
- 38. Naidoo, R. , P. Preez , G. Stuart-Hill , L. Chris Weaver , M. Ja Go , and M. Wegmann . 2012. Factors affecting intraspecific variation in home range size of a large African herbivore. Landscape Ecology, 27: 1523–1534. Google Scholar
- 39. Nathan, R , W. M. Getz , E. Revilla , M. Holyoak , R. Kadmon , D. Saltz , and P. E. Smouse . 2008. A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the USA, 105: 19052–19059. Google Scholar
- 40. Noer, L. C. , T. Dabelsteen , K. Bohmann , and A. Monadjem . 2012. Molossid bats in an African agro-ecosystem select sugarcane fields as foraging habitat. African Zoology, 47: 1–11. Google Scholar
- 41. Norberg, U. M. , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society, 316B: 335–427. Google Scholar
- 42. Pappoe, A. N. M. , F. A. Armah , E. C. Quaye , P. K. Kwakye , and G. N. T. Buxton . 2010. Composition and stand structure of a tropical moist semi-deciduous forest in Ghana. In ternational Research Journal of Plant Science, 1: 95–106. Google Scholar
- 43. Powell, R. A. , and M. S. Mitchell . 2012. What is a home range? Journal of Mammalogy, 93: 948–958. Google Scholar
- 44. Rhodes, M. , and C. Catterall . 2008. Spatial foraging behaviour and use of an urban landscape by a fast-flying bat, the molossid Tadarida australis. Journal of Mammalogy, 89: 34–42. Google Scholar
- 45. Russo, D. , G. Jones , and A. Migliozzi . 2002. Habitat selection by the Mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: Rhinolophidae) in a rural area of southern Italy and implications for conservation. Biological Conservation, 107: 71–81. Google Scholar
- 46. Rydell, J. 1992. Exploitation of insects around streetlamps by bats in Sweden. Functional Ecology, 6: 744–750. Google Scholar
- 47. Schnitzler, H.-U. , and E. K. V. Kalko . 2001. Echolocation by insect-eating bats. BioScience, 51: 557–569. Google Scholar
- 48. Signer, J. , N. Balkenhol , M. Ditmer , and J. Fieberg . 2015. Does estimator choice influence our ability to detect changes in home-range size? Animal Biotelemetry, 3: 1–9. Google Scholar
- 49. Sikes, R. S. , W. L. Gannon , and THE ANIMAL CARE AND USE COM MITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2011. Guidelines of the American Society of Mammalogist for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
- 50. Vallo, P. , A. Guillen-Servent , P. Benda , D. Pires , and P. Koubek . 2008. Variation of mitochondrial DNA in the Hippo sideros caffer complex (Chiroptera: Hipposideridae) and its taxonomic implications. Acta Chiropterologica, 10: 193–206. Google Scholar
- 51. Vallo, P. , P. Benda , N. Martinkova , P. Kaňuch , E. K. V. Kalko , J. Červeny, and P. Koubek . 2011. Morphologically uniform bats Hipposideros aff. ruber (Hipposideridae) exhibit high mitochondrial genetic diversity in southeastern Senegal. Acta Chiropterologica, 13: 79–88. Google Scholar
- 52. Weber, N. , E. K. V. Kalko , and J. Fahr . 2009. A first assessment of home range and foraging behaviour of the African long-tongued bat Megaloglossus woermanni (Chiroptera: Pte ropodidae) in a heterogeneous landscape within the La ma Forest Reserve, Benin. Acta Chiropterologica, 11: 317–329. Google Scholar
- 53. Weinbeer, M. , and E. K. V. Kalko . 2004. Morphological characteristics predict alternate foraging strategy and microhabitat selection in the orange-bellied bat, Lampronycteris brachyotis. Journal of Mammalogy, 85: 1116–1123. Google Scholar
- 54. Winkelmann, J. R. , F. J. Bonaccorso , E. E. Goedeke , and L. J. Ballock . 2003. Home range and territoriality in the least blossom bat, Macroglossus minimus, in Papua New Guinea. Journal of Mammalogy, 84: 561–570. Google Scholar
- 55. Wright, G. S. 2009. Hipposideros caffer (Chiroptera: Hippo sideridae). Mammalian Species, 845: 1–9. Google Scholar
- 56. Zeale, M. R. K. , I. Davidson-Watts , and G. Jones . 2012. Home range use and habitat selection by barbastelle bats (Bar bastella barbastellus): implications for conservation. Journal of Mammalogy, 93: 1110–1118. Google Scholar
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0eae3b91-19ca-46b8-b02d-a21e15fbeb88