Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | Special Issue S2 |
Tytuł artykułu

Visualization investigation on the marine data with multivariate statistical analysis methods

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Marine information is an important way for us to know and study more about the ocean. Marine data makes the basic of marine information. Because of the huge quantity and diversity of marine data, and at the same time marine data is polyatomic variable, we start with statistical analysis methods to search for the regularity of the marine data. On one hand, we get the aggregate variation functions of the marine data by factor analyzing in aspect of the spatiality. Then we visually describe the marine status of the studied sea area with pre variogram function and post variogram function. On the other hand, we used cluster analysis method to get the verifying rule in time and make visible graphs of the marine data. In this way, we can also supply with the suggestions in classifying the sea seawater quality. The data processing result shows that the suggested methods in this article are both operable and effective. At the same time some reasonable suggestions are given in the article
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Opis fizyczny
p.89-94,fig.,ref.
Twórcy
autor
  • Beijing University of Posts and Telecommunications, Beijing, 100876, China
autor
  • Beijing University of Posts and Telecommunications, Beijing, China
autor
  • Beijing University of Posts and Telecommunications, Beijing, China
Bibliografia
  • 1. Smirnov G.V. ,Olenin A.L.: Marine information systems and new measuring channels for hydrophysical parameters, Oceanology, Vol.55, pp.291-295, 2015.
  • 2. Andreas M. , Gunther R. : Review of three-dimensional ecological modeling related to the North Sea shelf system. Part 1: models and their results,Progress in Oceanography, Vol.57, no.2, pp. 175-217,2015.
  • 3. Helman J, Hesselink L.: Representation and Display of Vector Field Topology in Fluid Flow Data Sets, IEEE Computer, Vol.22, no.8, pp. 27-36,1989.
  • 4. Leeuw W. D., Liere R. V.: Multi-level topology for flow visualization, Computers & Graphics, Vol.24, no.3, pp.325-331,2000.
  • 5. Reinders F., Post F.H., Spoelder H.J.W.: Visualization of time-dependent data with feature tracking and event detection,The Visual Computer, Vol.17, no.1, pp.55-71,2001.
  • 6. Marsh J., Glencross M., Pettifer S., and Hubbold R.: A network architecture supporting consistent rich behaviour in collaborative interactive applications, IEEE Transactions on Visualization and Computer Graphics, Vol.12, no.3, pp.405-416,2006.
  • 7. Evangelinos C., Lermusiaux P. F. J., Geiger S. K., et al.: Web-enabled configuration and control of legacy codes An application to ocean modeling, Ocean Modelling, Vol.13, no.3, pp.197-220, 2006.
  • 8. Dai H.L., Mou N., Wang C.Y., et al. : Development status and trend of ocean buoy in China, Meteorological Hydrological and Marine Instruments (in Chinese), Vol.2, 2014.
  • 9. Zhang Feng, Li Sihai, Shi Suixiang: Research of Data Architecture in Digital Ocean, MarJne Science Bulletin, Vol.12, pp.85-96,2010.
  • 10. Levitus S., Antonov J. I., Boyer T.P., et al.: World ocean heat content and thermosteric sea level change (0-2000m) 1955-2010, Geophysical Research Letters, Vol.39, no.10, pp.L10603-L10607,2012.
  • 11. Cummings J.: Operational multivariate ocean data assimilation, Quarterly Journal of the Royal Meteorological Society, Vol. 131, issue 613, pp.3583-3604, 2005.
  • 12. Chau K., Muttil N.: Data mining and multivariate statistical analysis for ecological system in coastal waters. Journal of Hydroinformatics, Vol.9, no.4, pp.305-317,2007.
  • 13. Chuang, S.S., Wu, K.T., Lin, C.Y. et al.: Poincaré plot analysis of autocorrelation function of RR intervals in patients with acute myocardial infarction, J Clin Monit Comput, Vol.28, pp.387-401,2014.
  • 14. Hatzikos E., Hätönen J., Bassiliades N., Vlahavas, I., Fournou, E.: Applying adaptive prediction to sea-water quality measurements, Expert Systems with Applications, Vol.36, pp.6773-6779,2009.
  • 15. Shrestha S., Kazama F.: Assessment of surface water quality multivariate statistical techniques: a case study of the Fuji river basin, Japan Environmental Modelling and Software, Vol.22, pp. 464-475,2007.
  • 16. M. J. Martin, M. Balmaseda, L. Bertino, et al.: Status and future of data assimilation in operational oceanography, J. Oper. Oceanogr. , Vol.8, no.S1, pp.28-48,2015.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0c5c424e-6228-4879-94f6-7a5e9e278029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.