Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Luminescent nanocrystals and quantum dots have great potential for use as fluorescent markers in biology and medicine. However, their first generations were based on the heavy-metal core, which was unstable and shed heavy-metal ions into biological media. This, coupled with a lack of information on their biodistribution and pharmacokinetics, rendered them unusable for purposes outside research. The recently developed nonheavy metal nanocrystals are a promising material for future medical use. Yet, the controversies over their application, absorption and biodistribution remain. Various recent papers present different results on the uptake of nanocrystals and on their intracellular and organ distribution. In our study, we focused on the question of how the size and shape of nanocrystals affect their duodenal absorption after intragastric gavage (IG) and distribution to the liver. Commercial bulk nanoparticles and hydrothermal nanoparticles produced at the Institute of Physics PAS were the same in composition and excitation-emission range, but significantly different in shape and size. Adult mice (n = 24) aged 3-6 months were kept in standard living conditions (12 h day-night cycle), fed ad libitum with unobstructed access to water. Following a 1-week adaptation period, an RO water suspension of nanoparticles (50 µg/ml) was administered by IG. No changes in the behaviour of the mice or pathophysiological changes in their organs were observed following IG. The control group received an identical volume of RO water by IG. Cross-sections of the organs were examined both qualitatively and quantitatively by confocal microscopy and scanning cytometry. Following IG, both types of nanoparticles entered the duodenum in a similar time, but only the smaller, elongated hydrothermal nanoparticles were absorbed through the intestinal epithelium and distributed throughout internal organs (p ≤ 0.001). In conclusion, we found that the size and shape of nanocrystals is crucial for their bioavailability.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.558-563,fig.,ref.
Twórcy
autor
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Faculty of Veterinary Medicine, Warsaw University of Life Sciences- SGGW, Nowoursynowska 100, 02-797 Warsaw, Poland
autor
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 100, 02-797 Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Lotników 32/46, 02-668 Warsaw, Poland
autor
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 100, 02-797 Warsaw, Poland
autor
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 100, 02-797 Warsaw, Poland
autor
- Veterinary Research Centre, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 100, 02-797 Warsaw, Poland
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 100, 02-797 Warsaw, Poland
autor
- Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology, Pulaskiego 10, 70-322 Szczecin, Poland
autor
- Institute of Physics, Polish Academy of Sciences, Lotników 32/46, 02-668 Warsaw, Poland
autor
- Institute of Physics, Polish Academy of Sciences, Lotników 32/46, 02-668 Warsaw, Poland
Bibliografia
- 1. Akerman M. E., Chan W. C., Laakkonen P., Bhatia S. N., Ruoslahti E.: Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA. 2002, 99, 12617-12621.
- 2. Babic M., Horak D., Trchova M., Jendelova P., Glogarova K., Lesny P., Herynek V., Hajek M., Sykova E.: Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug. Chem. 2008, 19, 740-750.
- 3. Baek M., Choi S. J., Choy J. H., Chung H. E., Jeong J., Kim T. H., Lee J. K., Lee J., Lee W. J., Oh J. M., Paek S. M., Yu J.: Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int. J. Nanomed. 2012, 7, 3081-3097.
- 4. Bian S. W., Mudunkotuwa I. A., Rupasinghe T., Grassian V. H.: Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir. 2011, 27, 6059-6068.
- 5. Bockman J., Lahl H., Eckert T., Unterhalt B.: Blood titanium levels before and after oral administration titanium dioxide. Pharmazie. 2000, 55, 140-143.
- 6. Chen H., Li L., Cui S., Mahounga D., Zhang J., Gu Y.: Folate conjugated CdHgTe quantum dots with high targeting affinity and sensitivity for in vivo early tumor diagnosis. J. Fluoresc. 2011, 21, doi: 10.1007/s10895-010-0772-4
- 7. Chen N., He Y., Su Y., Li X., Huang Q., Wang H., Zhang X., Tai R., Fan C.: The cytotoxicity of cadmium-based quantum dots. Biomaterials. 2012, 33, 1238-1244.
- 8. Cho S. J., Maysinger D., Jain M., Roder B., Hackbarth S., Winnik F. M.: Longterm exposure to CdTe quantum dots causes functional impairment in live cells. Langmuir 2007, 23, 4, 1974-1980.
- 9. Daniels S. I., Soule E. E., Davidoff K. S., Bernbaum J. G., Hu D., Maeda K., Stahl
- S. J., Naiman N. E., Waheed A. A., Freed E. O., Wingfield P., Yarchoan R., Davis D. A.: Activation of virus uptake through induction of macropinocytosis with a novel polymerizing peptide. FASEB J. 2014, 28, doi: 10.1096/fj.13-238113
- 10. Gao X.: Multifunctional quantum dots for cellular and molecular imaging. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, p. 524-525.
- 11. Gardner M. L. G., Steffens K. J. (eds.): Absorption of orally administered enzymes. Springer-Verlag Berlin Heidelberg 1995.
- 12. Ghigo E.: A dilemma for viruses and giant viruses: which endocytic pathway to use to enter cells? Intervirology 2010, 53, doi: 10.1159/000312912
- 13. Gilbert B., Fakra S. C., Xia T., Pokhrel S., Mädler L., Nel A. E.: The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano. 2012, 6, 4921-4930.
- 14. Godlewski M. M., Godlewski M.: Superradiant rare-earth doped nanocrystals in the study of persorption processes in the adult intestine, [in:] Méndez-Vilas A. (ed.): Current Microscopy Contributions to Advances in Science and Technology, Microscopy Book Series #5, Formatex, Spain 2012, 582-590.
- 15. Hillyer J. F., Albrecht R. M. J.: Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. Pharm. Sci. 2001, 90, 1927-1936.
- 16. Jackson H., Muhammad O., Daneshvar H., Nelms J., Popescu A., Vogelbaum M. A., Bruchez M., Toms S. A.: Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 2007, 60, 524-530.
- 17. Kitagawa H., Yoshizawa Y., Yokohama T., Takeuchi T., Talukder M. J., Shimizu H., Ando K., Harada E. J.: Persorption of bovine lactoferrin from the intestinal lumen into the systemic circulation via the portal vein and the mesenteric lymphatics in growing pigs. Vet. Med. Sci. 2003, 65, 567-572.
- 18. Li J.-G., Ishigaki T.: One-step Ar/O2 thermal plasma processing of Y2O3:Eu3+ red phosphors: Phase structure, photoluminescent properties, and the effects of Sc3+ codoping. Solid State Chem. 2012, 196, 58-62.
- 19. Luo G., Long J., Zhang B., Liu C., Ji S., Xu J., Yu X., Ni Q.: Quantum dots in cancer therapy. Expert Opin. Drug Deliv. 2012, 9, 47-58.
- 20. Marsh M. (ed.): Endocytosis. Oxford University Press 2001.
- 21. Mi W., Tian W., Tian J., Jia J., Liu X., Dai J., Wang X.: Synthesis of CdSe quantum dots in ethanol: A facile way to achieve photoluminescence with high brightness. Colloids and Surfaces A: Physicochem. Eng. Aspects, 417, 2013, 179-182.
- 22. Naccache R., Rodríguez E. M., Bogdan N., Sanz-Rodriguez F., Cruz Mdel C., Fuente A. J., Vetrone F., Jaque D., Sole J. G., Capobianco J. A.: High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanocrystals. Cancers (Basel). 2012, 4, doi: 10.3390/cancers4041067
- 23. Nemade K. R., Waghuley S. A.: UV–VIS spectroscopic study of one pot synthesized strontium oxide quantum dots. Results in Physics. 2013, 3, 52-54.
- 24. Nwokolo C. U., Lewin J. F., Hudson M., Pounder R. E.: Transmucosal penetration of bismuth particles in the human stomach. Gastroenterology 1992, 102, 163-167.
- 25. Sharma R., Ghasparian A., Robinson J. A., McCullough K. C.: Synthetic viruslike particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis. PLoS One. 2012, 7, doi: 10.1371/journal.pone.0043248
- 26. Sonavane G., Tomoda K., Makino K.: Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf Biointerfaces 2008, 66, 274-280.
- 27. Sun L. D., Wang Y. F., Yan C. H.: Paradigms and Challenges for Bioapplication of Rare Earth Upconversion Luminescent Nanoparticles: Small Size and Tunable Emission/Excitation Spectra. Acc. Chem. Res. 2014, [Epub ahead of print]
- 28. Trefry J. C., Wooley D. P.: Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J. Biomed. Nanotechnol. 2013, 9, 1624-1635.
- 29. Volkheimer G. Z.: The Phenonenon of persorption – history and facts. Arztl. Fortbild. Jena 1993, 87, 217-221.
- 30. Wahab R., Tripathy S. K., Shin H.-S., Mohapatra M., Musarrat J., Al-Khedhairy A. A., Kaushik N. K.: Photocatalytic oxidation of acetaldehyde with ZnO-quantum dots. Chem. Eng. J. 2013, 226, 154-160.
- 31. Wang J., Yong W. H., Sun Y., Vernier P. T., Koeffler H. P., Gundersen M. A., Marcu L.: Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. J. Biomed. Opt. 2007, 12, 044021.
- 32. Wen Z., Zhao B., Song K., Hu X., Chen W., Kong D., Ge J., Bu Z.: Recombinant lentogenic Newcastle disease virus expressing Ebola virus GP infects cells independently of exogenous trypsin and uses macropinocytosis as the major pathway for cell entry. Virol. J. 2013, 10, doi: 10.1186/1743-422X-10-331
- 33. Yatsunenko S., Kaszewski J., Grzyb J., Pełech I., Godlewski M. M., Mijowska E., Narkiewicz U., Godlewski M.: Impact of yttria stabilization on Tb3+ intra-shell luminescence efficiency in zirconium dioxide nanopowders. J. Phys. Condens Matter. 2013, 25, 194106, doi: 10.1088/0953-8984/25/19/194106
- 34. Yuji M., Tsubata M., Chin K., Onishi S., Inamoto T., Qi W.-M., Warita K., Yokoyama T., Hoshi N., Kitagawa H.: Persorption of luminal antigenic molecule and its specific antibody via apoptotic epithelial cells of intestinal villi and Peyer’s patches into peripheral blood in rats. J. Vt. Med. Sci. 2006, 68, 1297-1305.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0c2f6a57-b0f2-40e8-bdd1-bf9ce369744d