Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 1 |
Tytuł artykułu

Antioxidative response of Hordeum maritimum L. to potassium deficiency

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the present study was to determine the influence of potassium deprivation on the halophyte species Hordeum maritimum grown in hydroponics for 2 weeks. Treatments were with potassium (+K) or without potassium (-K). Growth, water status, mineral nutrition, parameters of oxidative stress [malondialdehyde (MDA), carbonyl groups (C=O), and hydrogen peroxide concentration (H₂O₂) contents], antioxidant enzyme activities [superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate peroxidase (MDHAR, EC 1.6.5.4), dehydroascorbate peroxidase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2)], and antioxidant molecules [ascorbate (ASC), and glutathione (GSH)] were determined. Results showed that the growth of vegetative organs decreased owing to potassium deficiency with roots (-36%) more affected than shoots (-12%). Water status was only diminished in roots (reduction of 24%). Potassium deprivation decreased potassium concentration in both organs, this decrease was more pronounced in roots (-81%) than in shoots (-55%). In contrast to carbonyl groups, MDA content increased owing to potassium deprivation. Except for CAT activity that remained unaffected; SOD, GPX, APX, GR, MDHAR, and DHAR activities were significantly increased. H₂O₂ concentration was negatively correlated with the activities of enzymes and the accumulation of non-enzymatic antioxidants implicated in its detoxification. In conclusion, a cooperative process between the antioxidant systems is important for the tolerance of H. maritimum to potassium deficiency.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
33
Numer
1
Opis fizyczny
p.193-202,fig.,ref.
Twórcy
autor
  • Laboratoire d’Adaptation des Plantes aux Stress Abiotiques, Centre de Biotechnologie ála Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
  • Departamento de Bioquímica, Biología celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
autor
  • Departamento de Bioquímica, Biología celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
autor
  • Laboratoire d’Adaptation des Plantes aux Stress Abiotiques, Centre de Biotechnologie ála Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
  • Departamento de Bioquímica, Biología celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
Bibliografia
  • Aebi H (1984) Catalase in vitro. Methods Enzymol 52:121–126
  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233
  • Andrews M, Sprent JI, Raven JA, Eady PE (1999) Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant Cell Environ 22:949–958
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–379
  • Arnon DI, Hoagland DR (1940) Crop production in artificial solutions and in soil with special reference to factors affecting yields and absorption of inorganic nutrients. Soil Sci 50:463–484
  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, Braga de Abreu CE, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salttolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94
  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:493–502
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310
  • Cakmak I (1994) Activity of ascorbate-dependent H₂O₂-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45:1259–1266
  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530
  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227
  • Cakmak I, Hengeler C, Marschner H (1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250
  • Corpas F, Palma JM, Sandalio LM, Lopez-Huertas E, Romero-Puertas MC, Barroso JB, del Río LA (1999) Purification of catalase from pea leaf peroxisomes: identification of five different isoforms. Free Rad Res 31:235–241
  • Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CV, Sarath G (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max L. Merr) root nodules. Plant Physiol 102:481–489
  • Drążkiewicz M, Skórzyńska P, Krupa Z (2003) Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci 164:195–202
  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284
  • Griffith OW (1980) Determination of glutathione disulfide using glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284
  • Grossman A, Takahashi H (2001) Macronutrient utilisation by photosynthetic eukaryotes and the fabric of interactions. Ann Rev Plant Physiol Plant Mol Biol 52:163–210
  • Hafsi C, Lakhdar A, Rabhi M, Debez A, Abdelly C, Ouerghi Z (2007) Interactive effects of salinity and potassium availability on growth, water status, and ionic composition of Hordeum maritimum. J Plant Nutr Soil Sci 170:469–473
  • Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine, 3rd edn. Clarendon Press, Oxford
  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Bureau of Horticultural Plantation Crops Tech Commun N. 22
  • Hodgs M (2003) Oxidative stress and post harvest produce. In: Hodges M (ed) Post harvest oxidative stress in horticultural crops. Food Products Press, New York, pp 1–12
  • Hunt R (1990) Basic growth analysis. Plant growth analysis for beginners. Unwin Hyman, London, 112
  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284
  • Kampfenkel K, Van Montagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from planttissue. Anal Biochem 255:165–167
  • Kandlbinder A, Finkemeier I, Wormuth D, Hanitzsch M, Dietz KJ (2004) The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol Plant 120:63–73
  • Kuźniak E, Sklodowska M (1999) The effect of Botrytis cinerea infection on ascorbate–glutathione cycle in tomato leaves. Plant Sci 148:69–76
  • Lechno S, Zamski E, Telor E (1997) Salt stress-induced responses in cucumber plants. J Plant Physiol 150:206–211
  • Levine RL, Willians JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–363
  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London
  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, San Diego
  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263
  • Mäser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498
  • Neil S, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279
  • Quessada MP, Macheix JJ (1984) Caractérisation d’une peroxidase impliquée spécifiquement dans la lignification en relation avec l’incompatibilité au greffage chez l’abricotier. Physiologie Végétale 22:533–540
  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133:624–636
  • Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the modification of proteins in pea plants. Plant Cell Environ 25:677–686
  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663
  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126
  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12
  • Schachtman DP (2000) Molecular insights into the structure and function of plant K⁺ transport mechanisms. Biochem Biophys Acta 1465:127–139
  • Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4(7):281–287
  • Screenivasulu N, Ramanjulu S, Ramachandra Kini K, Prakash HS, Shetty HS, Savithri HS, Sudhakar C (1999) Peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of foxtail millet. Plant Sci 141:1–9
  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101:8827–8832
  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669
  • Subbarao GV, Wheeler RM, Stutte GW, Levine LH (1999) How far can sodium substitute for potassium in red beet? J Plant Nutr 22(11):1745–1761
  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responsesinfluence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694
  • Tewari RK, Kumar P, Sharma PN (2007) Oxidative stress and antioxidant responses in young leaves of mulberry plants under nitrogen, phosphorus or potassium deficiency. J Integr Plant Biol 49(3):313–322
  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate gene increase protection against oxidative stress. Plant Cell Physiol 40:725–732
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0afaa59b-710e-4168-b93a-49f3bffe4f3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.