Warianty tytułu
Języki publikacji
Abstrakty
The constitutive expressor of pathogenesisrelated genes 5 (CPR5) plays a role in pathogen defence responses, programmed cell death, cell wall biogenesis, seed generation and senescence regulation in plants. Here, we investigated the functional characteristics of CPR5 to long-term heat stress in Arabidopsis with different genotypes: wild type (WT), cpr5 mutant and cpr5/CPR5 complementary transgenic plant. The cpr5 mutant showed increased susceptibility to long-term heat stress, displaying significant decreases in hypocotyl elongation, seedling and inflorescence survival, membrane integrity and photosystem II activity (Fv/Fm) during heat stress. However, the thermotolerance was recovered when cpr5 mutant was transformed with a CPR5 gene. H₂O₂ accumulation and lipid peroxidation were lower in cpr5/CPR5 plants and WT than in cpr5 mutants after exposure to 36 °C for 5 days. The alleviated oxidative damage was associated with increased activities of superoxide dismutase, catalase, and ascorbate peroxidase. Furthermore, the induced expression of HSP17.6A-CI, HSP101 and HSP70B under long-term heat stress was more substantial in cpr5/CPR5 plants and WT than in cpr5 mutants. These findings suggest that CPR5 plays an important role in thermotolerance of Arabidopsis by regulating the activities of antioxidant enzymes and the expressions of heat shock protein genes.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.2093-2103,fig.,ref.
Twórcy
autor
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, No.55, West Zhongshan Ave., Tianhe District, 510630 Guangzhou, People's Republic of China
autor
- School of Bioscience and Bioengineering, South China University of Technology, 510006 Guangzhou, People's Republic of China
autor
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
autor
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, No.55, West Zhongshan Ave., Tianhe District, 510630 Guangzhou, People's Republic of China
Bibliografia
- Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171(3):382–388. doi:10.1016/j. plantsci.2006.04.009
- Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118
- Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9(9):1573–1584. doi: 10.1105/tpc.9.9.1573
- Brininstool G, Kasili R, Simmons LA, Kirik V, Hülskamp M, Larkin JC (2008) Constitutive expressor of pathogenesis-related genes5 affects cell wall biogenesis and trichome development. BMC Plant Biol 8:58. doi:10.1186/1471-2229-8-58
- Camejo D, Rodríguez P, Morales A, Dell’Amico JM, Torrecillas A, Alarcón JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162(3):281–289. doi:10.1016/j.jplph.2004.07.014
- Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775. doi:10.1002/9780470110171.ch14
- Chen ZQ, Chen WL, Yang CW (2009) Effects of exogenous salicylic acid on photosynthesis in Arabidopsis leaves based on fluorescence spectra and delayed fluorescence technique. Spectrosc Spect Anal 29(8):2208–2212. doi:10.3964/j.issn.1000-0593(2009)08-2208-05
- Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO (2010) Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem Biophys Res Commun 401(2):238–244. doi:10.1016/j.bbrc.2010.09.038
- Cho EK, Hong CB (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J Plant Biol 47(2):149–159. doi:10.1007/BF03030646
- Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38(3):432–447. doi:10.1111/j.1365-313X.2004.02054.x
- ClarkeSM, Cristescu SM, MierschO, Harren FJ, Wasternack C,MurLA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182(1):175–187. doi:10.1111/j.1469-8137.2008.02735.x
- Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. doi:10.1046/j.1365-313x.1998.00343.x
- Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R (2011) Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol. J Plant Physiol 168(13):1526–1533. doi:10.1016/j.jplph.2011.01.015
- Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. doi:10.1146/annurev. physiol.61.1.243
- Gao G, Zhang S, Wang C, Yang X, Wang Y, Su X, Du J, Yang C (2011) Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling. PLoS ONE 6(4):e19406. doi: 10.1371/journal.pone.0019406
- Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990(1):87–92. doi:10.1016/S0304-4165(89)80016-9
- Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. doi:10.1016/j.plaphy.2010.08.016
- HeathRL, PackerL (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198. doi:10.1016/0003-9861(68) 90654-1
- HongSW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97(8):4392–4397. doi:10.1073/pnas.97.8.4392
- Hong SW, Vierling E (2001) Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J 27(1):25–35. doi:10.1046/j.1365-313x.2001. 01066.x
- IbaK(2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245. doi:10.1146/annurev.arplant.53. 100201.160729
- Jing HC, Anderson L, Sturre MJ, Hille J, Dijkwel PP (2007) Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence. J Exp Bot 58(14):3885–3894. doi:10.1093/jxb/erm237
- Jing HC, Hebeler R, Oeljeklaus S, Sitek B, Stühler K, Meyer HE, Sturre MJG, Hille J, Warscheid B, Dijkwel PP (2008) Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. Plant Biol (Stuttg) (Suppl 1) 10:85–98. doi:10.1111/j.1438-8677.2008.00087.x
- Jung S (2004) Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci 166(2):459–466. doi:10.1016/j.plantsci.2003.10.012
- Kirik V, Bouyer D, Schöbinger U, Bechtold N, Herzog M, Bonneville JM, HülskampM(2001) CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Curr Biol 11(23):1891–1895. doi:10.1016/S0960-9822(01)00590-5
- Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25(3): 147–150. doi:10.1007/BF00033156
- Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138(2):882–897. doi:10.1104/pp.105.062257
- Lechaudel M, Urban L, Joas J (2010) Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. ‘Cogshall’) without growth conditions bias. J Agric Food Chem 58 (13):7532–7538. doi:10.1021/jf101216t
- Lee JH, Schöffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252(1–2):11–19. doi:10.1007/BF0217 3200
- Lee SH, AhsanN, LeeKW,KimDH, LeeDG,Kwak SS,Kwon SY,Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164(12):1626–1638. doi:10.1016/j.jplph. 2007.01.003
- Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233(6):1237–1252. doi:10.1007/s00425-011-1375-2
- Marangoni AG, Palma T, Stanley DW (1996) Membrane effects in postharvest physiology. Postharvest Biol Tec 7(3):193–217. doi: 10.1016/0925-5214(95)00042-9
- Meiri D, Tazat K, Cohen-Peer R, Farchi-Pisanty O, Aviezer-Hagai K, Avni A, Breiman A (2010) Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance. Plant Mol Biol 72(1–2):191–203. doi:10.1007/s11103-009-9561-3
- Miroshnichenko S, Tripp J, Nieden U, Neumann D, Conrad U, Manteuffel R (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41(2):269–281. doi:10.1111/j.1365-313X.2004.02290.x
- Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. doi:10.1016/j.tplants.2004.08.009
- Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880
- Nishizawa-YokoiA,NosakaR, HayashiH, TainakaH, Maruta T, Tamoi M, Ikeda M,Ohme-TakagiM, Yoshimura K, Yabuta Y, Shigeoka S (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52(5):933–945. doi:10.1093/pcp/pcr045
- Oelze ML, Vogel MO, Alsharafa K, Kahmann U, Viehhauser A, Maurino VG, Dietz KJ (2012) Efficient acclimation of the chloroplast antioxidant defence of Arabidopsis thaliana leaves in response to a 10-or 100-fold light increment and the possible involvement of retrograde signals. J Exp Bot 63(3):1297–1313. doi:10.1093/jxb/err356
- Pang CH, Li K, Wang BS (2011) Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol Plantarum 143(4):355–366. doi:10.1111/j.1399-3054.2011.01515.x
- Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol Biochem 110(1):125–136. doi: 10.1104/pp.110.1.125
- Savehenko GE, Klyuchareva EA, Abramchik LM, Serdyuchenko EV (2002) Effect of periodic heat shock on the inner membrane system of etioplasts. Russ J Plant Physiol 49(3):349–359. doi: 10.1023/A:1015592902659
- Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27(5):407–415. doi:10.1046/j.1365-313X.2001.01 107.x
- Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283(14):9269–9275. doi:10.1074/jbc.M709187200
- Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71(4):391–411. doi:10.1016/j.jprot.2008.07.005
- Török Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vígh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci USA 98(6):3098–3103. doi:10.1073/pnas.051619498
- Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99(1):517–522. doi:10.1073/pnas. 012452499
- Turóczy Z, Kis P, Török K, Cserhati M, Lendvai A, Dudits D, Horvath GV (2011) Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Mol Biol 75(4–5):399–412. doi:10.1007/s11103-011-9735-7
- Wang YH, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167(4):671–677. doi:10.1016/j.plantsci.2004.03.032
- Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Horticult 8(2):87–90
- Xu J, Zhang B, Jiang C, Ming F (2011) RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana. Plant Mol Biol 75(1–2):167–178. doi: 10.1007/s11103-010-9716-2
- Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153(4):1895–1906. doi:10.1104/pp.110.160424
- Zhao J, Wang C, Bedair M, Welti R, Sumner LW, Baxter I, Wang X (2011) Suppression of phospholipase Dcs confers increased Aluminum resistance in Arabidopsis thaliana. PLoS ONE 6(12):e28086. doi:10.1371/journal.pone.0028086
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0ab33032-d6ac-4109-b8c0-06e5d7b5ad00