Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |
Tytuł artykułu

Hierarchical Ag-ZnO microspheres with enhanced photocatalytic degradation activities

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the significantly enhanced photocatalytic performances and higher reaction rate of the hierarchical ZnO microspheres – initially prepared by a solvothermal method without surfactants or templates and decorated with Ag nanoparticles by a photoreduction method – were found for the degradation of methylene blue (MB) under both ultraviolet (UV) and visible light irradiation. Various characterization results confirmed that the modification of silver with an optimal amount can effectively extend the absorption spectrum to the visible region and inhibit a recombination of photo-induced charge carriers. Moreover, the reason for promoted photostability and the possible mechanism for the enhanced photocatalytic activity of the as-prepared Ag/ZnO composites under UV or visible light irradiation were also systematically investigated and discussed.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
26
Numer
2
Opis fizyczny
P.871-880,fig.,ref.
Twórcy
autor
  • Department of pharmacy, Xiamen Medical College, Xiamen 361008, China
autor
  • Department of pharmacy, Xiamen Medical College, Xiamen 361008, China
autor
  • College of Chemistry and Environmental Engineering, Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, China
autor
  • Department of Chemistry and Applied Chemistry, Changji University, Changji 831100, China
autor
  • Department of Chemistry and Applied Chemistry, Changji University, Changji 831100, China
autor
  • Department of Chemistry and Applied Chemistry, Changji University, Changji 831100, China
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Bibliografia
  • 1. XU F., YUAN Y., HAN H., WU D., GAO Z., JIANG K. Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight. Crystengcomm, 14, 3615, 2012.
  • 2. HAN Z., REN L., CUI Z., CHEN C., PAN H., CHEN J. Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Applied Catalysis B: Environmental. 126, 298, 2012.
  • 3. ZHANG H., CHEN G., BAHNEMANN D.W. Photoelectrocatalytic materials for environmental applications, Journal of Materials Chemistry. 19, 5089, 2009.
  • 4. KAYACI F., VEMPATI S., DONMEZ I., BIYIKLI N., UYAR T. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale, 6, 10224, 2014.
  • 5. BEGUM G., MANNA J., RANA R.K. Controlled Orientation in a Bio-Inspired Assembly of Ag/AgCl/ZnO Nanostructures Enables Enhancement in Visible-Light-Induced Photocatalytic Performance. Chemistry-A European Journal, 18, 6847, 2012.
  • 6. LIU Y., WEI S., WEI G. Ag/ZnO heterostructures and their photocatalytic activity under visible light: Effect of reducing medium. Journal of Hazardous Materials, 287, 59, 2015.
  • 7. LI Y., ZHOU X., HU X., ZHAO X., FANG P. Formation of Surface Complex Leading to Efficient Visible Photocatalytic Activity and Improvement of Photostabilty of ZnO. Journal of Physical Chemistry C, 113, 16188, 2009.
  • 8. JIN J.J., YU J.G., GUO D.P., CUI C., HO W.K. A Hierarchical Z-Scheme CdS-WO₃ photocatalyst with Enhanced CO₂ reduction Activity. Small, 11, 5262, 2015.
  • 9. LI J.D., YU C.L., FANG W., ZHU L.H., ZHOU W.Q., FAN Q.Z., Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi₂WO₆ microspheres. Chinese Journal of Catalysis, 36, 987, 2015.
  • 10. KAYACI F., VEMPATI S., OZGIT-AKGUN C., DONMEZ I., BIYIKLI N., UYAR T. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO₂ and TiO₂-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. Nanoscale, 6, 5735, 2014.
  • 11. KADAM A., DHABBE R., GOPHANE A., SATHE T., GARADKAR K., Template free synthesis of ZnO/Ag₂O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange. Journal of Photochemistry & Photobiology, B: Biology, 154, 24, 2016.
  • 12. LIU G., LI G., QIU X., LI L. Synthesis of ZnO/titanate nanocomposites with highly photocatalytic activity under visible light irradiation. Journal of Alloys & Compounds, 481, 492, 2009.
  • 13. QIU R., ZHANG D., MO Y., LIN S., BREWER E., HUANG X., XIONG Y., Photocatalytic activity of polymer-modified ZnO under visible light irradiation. Journal of Hazardous Materials, 156, 80, 2008.
  • 14. SUN Y.Q., SUN Y., ZHANG T., CHEN G., ZHANG F., LIU D., CAI W., LI Y., YANG X., LI C. Complete Au@ ZnO Core-Shell Nanoparticles with Enhanced Plasmonic Absorption Enabling Significantly Improved Photocatalysis. Nanoscale, 8, 10774, 2016.
  • 15. Yu C.L., BAI Y., CHEN J.C., ZHOU W.Q., HE H.B., YU J.C., ZHU L.H., XUE S.S. Pt/Bi₂WO₆ composite microflowers: High visible light photocatalytic performance and easy recycle. Separation and Purification Technology, 154, 115, 2015.
  • 16. KURIAKOSE S., CHOUDHARY V., SATPATI B., MOHAPATRA S. Facile synthesis of Ag-ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange. Physical Chemistry Chemical Physics, 16, 17560, 2014.
  • 17. YU C.L., YANG K., XIE Y., FAN Q.Z., YU J.C., SHU Q., WANG C.Y. Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale, 5, 2142, 2013.
  • 18. DAS S., SINHA S., SUAR M., YUN S., MISHRA A., TRIPATHY S. K. Solar-photocatalytic disinfection of Vibria cholerae by using Ag@ZnO core-shell structure nanocomposites. Journal of Photochemistry Photobiology B: Biology, 142, 68, 2015.
  • 19. PENG L., ZHE W., TONG W., QING P., YADONG L. Au-ZnO hybrid nanopyramids and their photocatalytic properties. The Journal of the American Chemical Society, 133, 5660, 2011.
  • 20. LIU H.R., SHAO G.X., ZHAO J.F., ZHANG Z.X., ZHANG Y., LIANG J., LIU X.G., JIA H.S., XU B.S. Worm-Like Ag/ ZnO Core-Shell Heterostructural Composites: Fabrication, Characterization, and Photocatalysis, The Journal of Physical Chemistry. C, 116, 16182, 2012.
  • 21. LU F., CAI W., ZHANG Y. ZnO Hierarchical Micro/ Nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance &dagger. Advanced Functional Materials, 18, 1047, 2008.
  • 22. YU C.L., ZHOU W.Q., LIU H., LIU Y., DINGYSUOU D.D. Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion. Chemical Engineering Journal, 287, 117, 2016.
  • 23. YU C.L., CAO F.F., LI X., LI G., XIE Y., YU J.C., SHU Q., FAN Q.Z., CHEN J.C. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chemical Engineering Journal, 219, 86, 2013.
  • 24. FANG W., YU C.L. Thermostability and photocatalytic performance of BiOCl₀.₅Br0.5 composite microspheres. Journal of Materials Research, 30, 3125, 2015.
  • 25. JING W.X., QI H., SHI J.F. JIANG Z.D., ZHOU F., CHENG Y.Y., GAO K. Effects of the geometries of microscale substrates on the surface morphologies of ZnO nanorod-based hierarchical structures. Applied Surface Science, 355, 403, 2015.
  • 26. SARAVANAN R., KARTHIKEYAN N., GUPTA V.K., THIRUMAL E., THANGADURAI P., NARAYANAN V., STEPHEN A., ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light. Materials Science Engineering: C, 33, 2235, 2013.
  • 27. LIN D., WU H., ZHANG R., PAN W. Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers. Chemistry of Materials, 21, 3479, 2009.
  • 28. ALAMMAR T., MUDRING A.V. Facile preparation of Ag/ZnO nanoparticles via photoreduction. Journal of Materials Science, 44, 3218, 2009.
  • 29. ZHU G., LIU Y., XU H., CHEN Y., SHEN X., XU Z. Photochemical deposition of Ag nanocrystals on hierarchical ZnO microspheres and their enhanced gas-sensing properties. Crystengcomm, 14, 719, 2011.
  • 30. MOSQUERA E., ROJAS-MICHEA C., MOREL M., GRACIA F., FUENZALIDA V., ZARATE R.A. Zinc oxide nanoparticles with incorporated silver: Structural, morphological, optical and vibrational properties. Applied Surface Science, 347, 561, 2015.
  • 31. LIU T.Z., LI Y.Y., ZHANG H., WANG M., FEI X.Y., DUO S.W., CHEN Y., PAN J., WANG W. Tartaric acid assisted hydrothermal synthesis of different flower-like ZnO hierarchical architectures with tunable optical and oxygen vacancy-induced photocatalytic properties. Applied Surface Science, 357, 516, 2015.
  • 32. TRIPATHY N., AHMAD R., KUK H., LEE D.H., HAHN Y.B., KHANG G. Rapid methyl orange degradation using porous ZnO spheres photocatalyst. Journal of Photochemistry & Photobiology, B: Biology, 161, 312, 2016.
  • 33. TANG D.M., LIU G., LI F., TAN J., LIU C., LU G.Q., CHENG H.M. Synthesis and Photoelectrochemical Property of Urchin-like Zn/ZnO Core-Shell Structures. The Journal of Physical Chemistry C, 113, 11035, 2009.
  • 34. MOUDLER J.F., STICKLE W.F., SOBOL P.E., BOMBEN K.D. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota, 1992.
  • 35. DENG Q., TANG H.B., LIU G., SONG X.P., XU G.P., LI Q., NG D.H.L., WANG G.Z. The fabrication and photocatalytic performances of flower-like Ag nanoparticles/ ZnO nanosheets-assembled microspheres. Applied Surface Science, 331, 50, 2015.
  • 36. DENG Q., DUAN X., NG D.H.L., TANG H., YANG Y., KONG M., WU Z., CAI W., WANG G., Ag Nanoparticle Decorated Nanoporous ZnO Microrods and Their Enhanced Photocatalytic Activities, ACS Applied Materials & Interfaces. 4, 6030, 2012.
  • 37. HUANG Q.L., ZHANG Q.T., YUAN S.S., ZHANG Y.C., ZHANG M. One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst. Applied Surface Science, 353, 949, 2015.
  • 38. WU A.P., TIAN C.G., YAN H.J., HONG Y., JIANG B.J., FU H.G. Intermittent microwave heating-promoted rapid fabrication of sheet-like Ag assemblies and small-sized Ag particles and their use as co-catalyst of ZnO for enhanced photocatalysis. Journal of Materials Chemistry A, 2, 3015, 2014.
  • 39. Liu H., Hu Y., Zhang Z., Liu X., Jia H., Xu B. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation, Appl. Surf. Sci., 355, 644, 2015.
  • 40. LIANG Y., GUO N., LI L., LI R., JI G., GAN S. Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Applied Surface Science, 332, 32, 2015.
  • 41. LAI Y., MING M., YU Y. One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation. Applied Catalysis B-Environmental., 100, 491, 2010.
  • 42. LI J., WANG G., WANG H., TANG C., WANG Y., LIANG C., CAI W., ZHANG L. In situ self-assembly synthesis and photocatalytic performance of hierarchical Bi₀.₅Na₀.₅TiO₃ micro/nanostructures. Journal of Materials Chemistry, 15, 2253, 2009.
  • 43. FAGERIA P., GANGOPADHYAY S., PANDE S. Synthesis of ZnO/Au and ZnO/Ag nano-particles and their photocatalytic application using UV and visible light. Rsc Advances, 4, 24962, 2014.
  • 44. WANG S., YU Y., ZUO Y., LI C., YANG J., LU C. Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires. Nanoscale, 4, 5895, 2012.
  • 45. BOUZID H., FAISAL M., HARRAZ F.A., AL-SAYARI S.A., ISMAIL A.A. Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity, Catalysis Today, 252, 20, 2015.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-028526cc-b611-48e2-865b-0565f3eb1564
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.