Warianty tytułu
Języki publikacji
Abstrakty
Radiotherapy and chemotherapeutic agents that damage DNA are the current major non-surgical means of treating cancer. However, many patients develop resistances to chemotherapy drugs in their later lives. The PI3K and Ras signaling pathways are deregulated in most cancers, so molecularly targeting PI3K-Akt or Ras-MAPK signaling sensitizes many cancer types to radiotherapy and chemotherapy, but the underlying molecular mechanisms have yet to be determined. During the multi-step processes of tumorigenesis, cancer cells gain the capability to disrupt the cell cycle checkpoint and increase the activity of CDK4/6 by disrupting the PI3K, Ras, p53, and Rb signaling circuits. Recent advances have demonstrated that PI3K-Akt-mTOR signaling controls FANCD2 and ribonucleotide reductase (RNR). FANCD2 plays an important role in the resistance of cells to DNA damage agents and the activation of DNA damage checkpoints, while RNR is critical for the completion of DNA replication and repair in response to DNA damage and replication stress. Regulation of FANCD2 and RNR suggests that cancer cells depend on PI3K-Akt-mTOR signaling for survival in response to DNA damage, indicating that the PI3K-AktmTOR pathway promotes resistance to chemotherapy and radiotherapy by enhancing DNA damage repair.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.233-242,fig.,ref.
Twórcy
autor
- Department of Preventive Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
autor
- Department of Environmental Hygiene, College of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
autor
- Department of Neurobiology, Third Military Medical University, Chongqing 400038, China
Bibliografia
- 1. Wullschleger, S., Loewith, R. and Hall, M.N. TOR signaling in growth and metabolism. Cell 124 (2006) 471–484.
- 2. Zoncu, R., Efeyan, A. and Sabatini, D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12 (2011) 21–35.
- 3. Laplante, M. and Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149 (2012) 274–293.
- 4. Cornu, M., Albert, V. and Hall, M.N. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23 (2013) 53–62.
- 5. Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. and Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4 (2005) 988–1004.
- 6. Sarbassov, D.D., Guertin, D.A., Ali, S.M. and Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307 (2005) 1098–1101.
- 7. Hung, C.M., Garcia-Haro, L., Sparks, C.A. and Guertin, D.A. mTORdependent cell survival mechanisms. Cold Spring Harb, Perspect. Biol. 4 (2012) DOI: 10.1101/cshperspect.a008771.
- 8. Shaw, R.J. and Cantley, L.C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441 (2006) 424–430.
- 9. Liu, W., Zhou, Y., Reske, S.N. and Shen, C. PTEN mutation: many birds with one stone in tumorigenesis. Anticancer Res. 28 (2008) 3613–3620.
- 10. McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Franklin, R.A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M.C., Fagone, P., Nicoletti, F., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L. and Martelli, A.M. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3 (2012) 1068–1111.
- 11. Rodon, J., Dienstmann, R., Serra, V. and Tabernero, J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat. Rev. Clin. Oncol. 10 (2013) 143–153.
- 12. Bjornsti, M.A. and Houghton, P.J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4 (2004) 335–348.
- 13. Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57–70.
- 14. Luo, J., Solimini, N.L. and Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136 (2009) 823–837.
- 15. Dick, F.A. and Rubin, S.M. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 14 (2013) 297–306.
- 16. Chen, H.Z., Tsai, S.Y. and Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9 (2009) 785–797.
- 17. Manning, B.D. and Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell 129 (2007) 1261–1274.
- 18. Heitman, J., Movva, N.R. and Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253 (1991) 905–909.
- 19. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P. and Hall, M.N. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10 (2002) 457–468.
- 20. Sarbassov, D.D., Ali, S.M. and Sabatini, D.M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17 (2005) 596–603.
- 21. Soulard, A. and Hall, M.N. SnapShot: mTOR signaling. Cell 129 (2007) 434.
- 22. Polak, P. and Hall, M.N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 21 (2009) 209–218.
- 23. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C.Y., He, X., MacDougald, O.A., You, M., Williams, B.O. and Guan, K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126 (2006) 955–968.
- 24. Li, Y., Inoki, K., Vacratsis, P. and Guan, K.L. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J. Biol. Chem. 278 (2003) 13663–13671.
- 25. Lee, D.F., Kuo, H.P., Chen, C.T., Hsu, J.M., Chou, C.K., Wei, Y., Sun, H.L., Li, L.Y., Ping, B., Huang, W.C., He, X., Hung, J.Y., Lai, C.C., Ding, Q., Su, J.L., Yang, J.Y., Sahin, A.A., Hortobagyi, G.N., Tsai, F.J., Tsai, C.H. and Hung, M.C. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130 (2007) 440–455.
- 26. Astrinidis, A., Senapedis, W., Coleman, T.R. and Henske, E.P. Cell cycleregulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B. J. Biol. Chem. 278 (2003) 51372–51379.
- 27. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P. and Guan, K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10 (2008) 935–945.
- 28. Meric-Bernstam, F. and Gonzalez-Angulo, A.M. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 27 (2009) 2278–2287.
- 29. Yap, T.A., Garrett, M.D., Walton, M.I., Raynaud, F., de Bono, J.S. and Workman, P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr. Opin. Pharmacol. 8 (2008) 393–412.
- 30. Moldovan, G.L. and D'Andrea, A.D. How the fanconi anemia pathway guards the genome. Annu. Rev. Genet. 43 (2009) 223–249.
- 31. Kitao, H. and Takata, M. Fanconi anemia: a disorder defective in the DNA damage response. Int. J. Hematol. 93 (2011) 417–424.
- 32. Kim, H. and D'Andrea, A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26 (2012) 1393–1408.
- 33. Kee, Y. and D'Andrea, A.D. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 24 (2010) 1680–1694.
- 34. Knipscheer, P., Raschle, M., Smogorzewska. A., Enoiu, M., Ho, T.V., Scharer, O.D., Elledge, S.J. and Walter, J.C. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326 (2009) 1698–1701.
- 35. Joo, W., Xu, G., Persky, N.S., Smogorzewska, A., Rudge, D.G., Buzovetsky, O., Elledge, S.J. and Pavletich, N.P. Structure of the FANCIFANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333 (2011) 312–316.
- 36. Shen, C., Oswald, D., Phelps, D., Cam, H., Pelloski, C.E., Pang, Q. and Houghton, P.J. Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double strand breaks. Cancer Res. 73 (2013) 3393–3401.
- 37. Kastan, M.B. and Bartek, J. Cell-cycle checkpoints and cancer. Nature 432 (2004) 316–323.
- 38. Guo, F., Li, J., Du, W., Zhang, S., O'Connor, M., Thomas, G., Kozma, S., Zingarelli, B., Pang, Q. and Zheng, Y. mTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells. Leukemia 27 (2013) 2040–2046.
- 39. Guo, F., Li, J., Zhang, S., Du, W., Amarachintha, S., Sipple, J., Phelan, J., Grimes, H.L., Zheng, Y. and Pang, Q. mTOR kinase inhibitor sensitizes T-cell lymphoblastic leukemia for chemotherapy-induced DNA damage via suppressing FANCD2 expression. Leukemia 28 (2014) 203–206.
- 40. Huang, M., Zhou, Z. and Elledge, S.J. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94 (1998) 595–605.
- 41. Zhao, X. and Rothstein, R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl. Acad. Sci. USA 99 (2002) 3746–3751.
- 42. Kolberg, M., Strand, K.R., Graff, P. and Andersson, K.K. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta 1699 (2004) 1–34.
- 43. Shen, C., Lancaster, C.S., Shi, B., Guo, H., Thimmaiah, P. and Bjornsti, M.A. TOR signaling is a determinant of cell survival in response to DNA damage. Mol. Cell. Biol. 27 (2007) 7007–7017.
- 44. Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., Takei, Y. and Nakamura, Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404 (2000) 42–49.
- 45. D'Angiolella, V., Donato, V., Forrester, F.M., Jeong. Y.T., Pellacani, C., Kudo, Y., Saraf, A., Florens, L., Washburn, M.P. and Pagano, M. Cyclin F- mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149 (2012) 1023–1034.
- 46. Imataka, H., Gradi, A. and Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17 (1998) 7480–7489.
- 47. Chow, L.M. and Baker, S.J. PTEN function in normal and neoplastic growth. Cancer Lett. 241 (2006) 184–196.
- 48. Graat, H.C., Carette, J.E., Schagen, F.H., Vassilev, L.T., Gerritsen, W.R., Kaspers, G.J., Wuisman, P.I. and van Beusechem, V.W. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol. Cancer Ther. 6 (2007) 1552–1561.
- 49. Wang, W. and El-Deiry, W.S. Restoration of p53 to limit tumor growth. Curr. Opin. Oncol. 20 (2008) 90–96.
- 50. Shepard, H.M., Jin, P., Slamon, D.J., Pirot, Z. and Maneval, D.C. Herceptin. Handb. Exp. Pharmacol. 181 (2008) 183–219.
- 51. Rivera, F., Vega-Villegas, M.E., Lopez-Brea, M.F. and Marquez, R. Current situation of Panitumumab, Matuzumab, Nimotuzumab and Zalutumumab. Acta Oncol. 47 (2008) 9–19.
- 52. Chresta, C.M., Davies, B.R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S.E., Vincent, J.P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., Jenkins, R., Jacobsen, M., Smith, G.C., Guichard, S. and Pass, M. AZD8055 is a potent, selective, and orally bioavailable ATPcompetitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70 (2010) 288–298.
- 53. Sangai, T., Akcakanat, A., Chen, H., Tarco, E., Wu, Y., Do, K.A., Miller, T.W., Arteaga, C.L., Mills, G.B., Gonzalez-Angulo, A.M. and MericBernstam, F. Biomarkers of response to Akt inhibitor MK-2206 in breast cancer. Clin. Cancer Res. 18 (2012) 5816–5828.
- 54. Vousden, K.H. and Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8 (2007) 275–283.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-00a0b8a4-1abc-44ba-903b-ff3a39bc7848