Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Porous carbons loaded with magnesium oxide were prepared through one-step process. Poly(ethylene terephthalate) and natural magnesite were used as carbon source and MgO precursor, respectively. An impact of a temperature and relative amounts of raw components used for preparations on the textural parameters of resulting hybrid materials is presented and discussed. As found, pore structure parameters tend to decrease along with MgO loading and temperature used during preparation process. Micropore area is the parameter being reduced primarily.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
42-46
Opis fizyczny
Daty
wydano
2011-01-01
online
2012-01-02
Twórcy
autor
- Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
- Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
- Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
- Instituto de Bioingeniería, Universidad Miguel Hernández, Edificio Vinalopo, Avda. de la Universidad s/n, 03202-Elche, Alicante, Spain
Bibliografia
- Cambridge Filter Japan, Ltd. (2009). Product information. Received May 16, 2009, from
- Liu, Z.-S. (2008). Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers. Waste Manage., 28, 2329-2335. DOI:10.1016/j.wasman.2007.10.013.[Crossref]
- Aroua, M.K., Daud, W.M.A.A., Yin, C.Y. & Adinata, D. (2008). Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon. Sep. Purif. Technol., 62, 609-613. DOI:10.1016/j.seppur.2008.03.003.[Crossref][WoS]
- Houshmand, A., Wan Daud, W.M.A., & Shafeeyan, M. S. (2011). Exploring Potential Methods for Anchoring Amine Groups on the Surface of Activated Carbon for CO2 Adsorption. Sep. Purif. Technol., 46, 1098-1112. DOI:10.1080/01496395.2010.546383.[WoS]
- Zhang, Z., Ma, X., Wang, D., Song C. & Wang, Y. (2011). Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas. AIChE J., DOI:10.1002/aic.12771.[WoS]
- Przepiórski, J., Yoshida, S. & Oya, A. (1999). Structure of K2CO3-loaded activated carbon fiber and its deodorization ability against H2S gas. Carbon, 37, 1881-1890. DOI:10,1016/S0008-6223(99)00088-3.
- Henning, K.D. & Schäfer, S. (1993). Impregnated activated carbon for environmental protection, Gas Sep. Purif., 7, 235-240. DOI:10.1016/0950-4214(93)80023-P.[Crossref]
- Hedin, N., Chen, L. & Laaksonen, A. (2010). Sorbents for CO2 capture from flue gas-aspects from materials and theoretical chemistry. Nanoscale, 2, 1819-1841. DOI:10.1039/c0nr00042f.[PubMed]
- Wu, Z., Hao, N., Xiao, G., Liu, L., Webley, P. & Zhao, D. (2011). One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO2 capture over a wide range of temperatures. Phys. Chem. Chem. Phys., 13, 2495-2503. DOI:10.1039/c0cp01807d.[WoS]
- Przepiórski, J. (2006). Activated carbon filters and their industrial applications in Activated Carbon Surfaces in Environmental Remediation (Interface Science and Technology, Volume 7, ed. T.J. Bandosz, chapter 9, ISBN:0-12-370536-3, pp.421-474). Academic Press.
- Przepiórski, J., Abe, Y., Yoshida, S. & Oya, A. (1997). Preferential supporting of potassium carbonate around the peripheral region of activated carbon fiber. J. Mater. Sci. Lett., 16, 1312-1314. DOI:10.1023/A:1018599513817.[Crossref]
- Yong, Z., Mata. V.G. & Rodrigues, A.E. (2001). Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorption, 7, 41-50. DOI:10.1023/A:1011220900415.[Crossref]
- Bhagiyalakshmi, M., Hemalatha, P., Ganesh, M., Peng, M.M. & Jang, H.T. (2011). A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. Fuel, 90, 1662-1667. DOI:10.1016/j.fuel.2010.10.050.[Crossref]
- She, L., Li, J., Wan, Y., Yao, X., Tu, B. & Zhao, D. (2011). Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. J. Mater. Chem., 21, 795-800. DOI:10.1039/c0jm02226h.[Crossref][WoS]
- Bhagiyalakshmi, M., Lee, J.Y. & Jang, H.T. (20011). Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. Int. J. Greenh. Gas Con., 4, 51-56. DOI:10.1016/j.ijggc.2009.08.001.[WoS][Crossref]
- Lee, S.J., Jung, S.Y., Lee, S.C., Jun, H.K., Ryu, C.K. & J.C. Kim. (2009). SO2 removal and regeneration of MgO-based sorbents promoted with titanium oxide. Ind. Eng. Chem. Res., 48, 2691-2696. DOI:10.1021/ie801081u.[Crossref][WoS]
- Hassanzadeh, A. & Abbasian, J. (2010). Regenerable MgO-based sorbents for high-temperature CO2 removal from syngas: 1. Sorbent development, evaluation, and reaction modeling. Fuel, 89, 1287-1297. DOI:10.1016/j.fuel.2009.11.017.[Crossref][WoS]
- Inagaki, M., Kobayashi, S., Koijn, F., Tanaka, N., Morishita, T. & Tryba, B. (2004). Pore structure of carbon coated on ceramic particles. Carbon, 42, 3153-3158. DOI:10.1016/j.carbon.2004.07.029.[Crossref]
- Inagaki, M., Kato, M., Morishita, T. Morita, K. (2007). Direct preparation of mesoporous carbon from a coal tar pitch. Carbon, 45, 1121-1124. DOI:10.1016/S1095-6433(98)00008-7.[Crossref]
- Przepiórski, J., Karolczyk, J., Takeda, K., Tsumura, T., Toyoda, M. & Morawski, A. M. (2009). Porous carbon obtained by carbonization of PET Mixed with basic magnesium carbonate: Pore structure and pore creation mechanism. Ind. Eng. Chem. Res. 48, 7110-7116. DOI:10.1021/ie801694t.[Crossref][WoS]
- Przepiórski, J., Karolczyk, J., Tsumura, T., Toyoda, M., Inagaki, M. & Morawski, A. W. (2011). Effect of some thermally unstable magnesium compounds on the yield of char formed from poly(ethylene terephthalate). J. Therm. Anal. Calorim. DOI:10.1007/s10973-011-1910-1.[WoS][Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_v10026-011-0047-0