Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | 1 | 4 | 356-369
Tytuł artykułu

Factors of lowered respiratory CO2 sensitivity by acetazolamide in anaesthetized rabbits

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The carbonic anhydrase (CA) inhibitor acetazolamide is a classic drug to treat patients with breathing disorders. Recent studies in rabbits showed that low-dose acetazolamide (not causing appreciable inhibition of red cell CA) significantly weakened respiratory muscle performance, accompanied by diminished ventilatory CO2-sensitivity, which implies stabilizing loop-gain properties. Now is aimed to explore the interaction of these factors under conditions of complete CA-inhibition by acetazolamide in a higher dose-range. In anesthetized rabbits (N=7), acetazolamide (up to 75 mg·kg−1) distinctly lowered the base excess (to-7.6 ± 0.9mM, mean ± SEM) without respiratory compensation of arterial pH. Ventilatory CO2-sensitivity was nearly abolished to 15.1 ± 5.2% of control, but the transmission of a CO2-mediated rise in tidal phrenic activity into respiratory work was only reduced by 51.6 ± 6.4%, P < 0.001, not very much more than (~38%) already observed at low-doses. Thus, the large reduction of ventilatory CO2-sensitivity in the high-dose range cannot be ascribed to respiratory muscle weakening, but rather may relate to complete inhibition of red cell CA. Conversely, CA-inhibition may not be the only cause for the weakening effect of acetazolamide on (respiratory) muscles. Adverse effects on respiratory muscles, impaired CO2-transport and acid-base imbalance may limit to make use of stabilizing effects on breathing control functions by high-dose acetazolamide.
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
4
Strony
356-369
Opis fizyczny
Daty
wydano
2006-12-01
online
2006-10-24
Twórcy
autor
  • Department of Physiology and Anesthesiology, Leiden University Medical Center, 2300, RC Leiden, The Netherlands
autor
  • Department of Physiology, Faculty of Medicine, Ruhr-University, 44780, Bochum, Germany
Bibliografia
  • [1] E.R. Swenson: “Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression”, Eur. Respir. J., Vol. 12, (1998), pp. 1242–1247. http://dx.doi.org/10.1183/09031936.98.12061242[Crossref]
  • [2] H. Tojima, F. Kunitomo, H. Kimura, K. Tatsumi, T. Kuriyama and Y. Honda: “Effects of acetazolamide in patients with the sleep apnoea syndrome”, Thorax, Vol. 43, (1988), pp. 113–119. http://dx.doi.org/10.1136/thx.43.2.113[Crossref]
  • [3] E.R. Swenson and J.M.B. Hughes: “Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in man”, J. Appl. Physiol., Vol. 73, (1993), pp. 230–237.
  • [4] L.J. Teppema and A. Dahan: “Acetazolamide and breathing. Does a clinical dose alter peripheral and central CO2 sensitivity?”, Am. J. Respir. Crit. Care Med., Vol. 160, (1999), pp. 1592–1597.
  • [5] L. Teppema, A. Berkenbosch, J. DeGoede and C. Olievier: “Carbonic anhydrase and the control of breathing: different effects of benzolamide and methazolamide in the anaesthetized cat”, J. Physiol. (Lond), Vol. 488, (1995), pp. 767–777.
  • [6] M. Wagenaar, L. Teppema, A. Berkenbosch, C. Olievier and H. Folgering: “The effect of low-dose acetazolamide on the ventilatory CO2 response curve in the anaesthetized cat”, J. Physiol. (Lond), Vol. 495, (1996), pp. 227–237.
  • [7] L.J. Teppema, A. Dahan and C.N. Olievier: “Low-dose acetazolamide reduces the hypoxic ventilatory response in the anaesthetized cat”, Respir. Physiol. Neurobiol., Vol. 140, (2004), pp. 43–51. http://dx.doi.org/10.1016/j.resp.2004.01.001[Crossref]
  • [8] E.R. Swenson, K.L. Leatham, R.C. Roach, R.B. Schoene, W.J. Mills and P.H. Hackett: “Renal carbonic anhydrase inhibition reduces high altitude sleep periodic breathing”, Respir. Physiol., Vol. 86, (1991) pp. 333–343. http://dx.doi.org/10.1016/0034-5687(91)90104-Q[Crossref]
  • [9] P.W. Jones and M. Greenstone: “Carbonic anhydrase inhibitors for hypercapnic ventilatory failure in chronic obstructive pulmonary disease”, Cochrane Database Syst. Rev., Vol. 1, (2001), CD002881.
  • [10] J. Verbraecken, M. Willemen, W. De Cock, E. Coen, P. Van de Heyning and W. De Backer: “Central sleep apnea after interrupting longterm acetazolamide therapy”, Respir. Physiol., Vol. 112, (1998), pp. 59–70. http://dx.doi.org/10.1016/S0034-5687(98)00010-3[Crossref]
  • [11] H.F. Kiwull-Schöne, L.J. Teppema and P.J. Kiwull: “Low-dose acetazolamide does affect respiratory muscle function in spontaneously breathing anesthetized rabbits”, Am. J. Respir. Crit. Care Med., Vol. 163, (2001), pp. 478–483.
  • [12] H. Kiwull-Schöne, L. Teppema, M. Wiemann and P. Kiwull: “Loop gain of respiratory control upon reduced activity of carbonic anhydrase or Na+/H+ exchange”, Adv. Exp. Med. Biol., Vol. 580, (2006), pp. 239–244.
  • [13] W.F. Brechue, D.M. Koceja and J.M. Stager: “Acetazolamide reduces peripheral afferent transmission in humans”, Muscle Nerve, Vol. 20, (1997), pp. 1541–1548. http://dx.doi.org/10.1002/(SICI)1097-4598(199712)20:12<1541::AID-MUS9>3.0.CO;2-8[Crossref]
  • [14] L.A. Garske, M.G. Brown and S.C. Morrison: “Acetazolamide reduces exercise capacity and increases leg fatigue under hypoxic conditions”, J. Appl. Physiol., Vol. 94, (2003), pp. 991–996.
  • [15] L.J. Teppema, F. Rochette and M. Demedts: “Ventilatory effects of carbonic anhydrase inhibition in cats: effects of acetazolamide in intact vs. peripherally chemodenervated animals”, Respir. Physiol., Vol. 74, (1988), pp. 373–382. http://dx.doi.org/10.1016/0034-5687(88)90044-8[Crossref]
  • [16] T.H. Maren: “Carbonic anhydrase: Chemistry, Physiology and inhibition”, Physiol. Rev. Vol. 47, (1967), pp. 595–781.
  • [17] L.J. Teppema, F. Rochette and M. Demedts: “Effects of acetazolamide on medullary extracellular pH and PCO2 and on ventilation in peripherally chemodenervated cats”, Pflügers Arch., Vol. 415, (1990), pp. 519–525.
  • [18] K. Kohshi, N. Konda, Y. Kinoshita, E. Tsuru and A. Yokota: “In situ arterial and brain tissue PaCO2 responses to acetazolamide in cats”, J. Appl. Physiol., Vol. 76, (1994), pp. 2199–2203.
  • [19] Ph.E. Bickler, L. Litt, D.B. Banville and J.W. Severinghaus: “Effects of acetazolamide on cerebral acid-base balance”, J. Appl. Physiol., Vol. 65, (1988), pp. 422–427.
  • [20] H. Kiwull-Schöne, H. Kalhoff, F. Manz, L. Diekmann and P. Kiwull: “Minimalinvasive approach to study pulmonary, metabolic and renal responses to acid-base changes in conscious rabbits”, Eur. J. Nutr., Vol. 40, (2001), pp. 255–259. http://dx.doi.org/10.1007/s394-001-8353-z[Crossref]
  • [21] R. Iturriagha: “Carotid body chemoreception: the importance of CO2-HCO 3− and carbonic anhydrase (review)”, Biol. Res., Vol. 26, (1993), pp. 319–329. http://dx.doi.org/10.1006/cbmr.1993.1022[Crossref]
  • [22] K. Taki, K. Oogushi, K. Hirahara, X. Gai, F. Nagashima and K. Tozuka: “Preferential acetazolamide-induced vasodilation based on vessel size and organ: Conformation of peripheral vasodilation with use of colored microspheres”, Angiology, Vol. 52, (2001), pp. 483–488. http://dx.doi.org/10.1177/000331970105200707[Crossref]
  • [23] A. Dahl, D. Russell, K. Rootwelt, R. Nyberg-Hansen and E. Kerty: “Cerebral vasoreactivity assessed with transcranial Doppler and regional cerebral blood flow measurements. Dose, serum concentration, and time course of the response to acetazolamide”, Stroke, Vol. 26, (1995), pp. 2302–2306.
  • [24] T.S. Lee: “End-tidal partial pressure of carbon dioxide does not accurately reflect PaCO2 in rabbits treated with acetazolamide during anaesthesia”, Br. J. Anaesthesiol., Vol. 73, (1994) pp. 225–226.
  • [25] C. Geers and G. Gros: “Carbon dioxide transport and carbonic anhydrase in blood and muscle”, Physiol. Rev., Vol. 80, (2000), pp. 681–715.
  • [26] M. Carmignani, C. Scopetta, F.O. Ranelletti and P. Tonali: “Adverse interaction between acetazolamide and anticholinesterase drugs at the normal and myasthenic neuromuscular junction level”, Int. J. Clin. Pharmacol. Therap. Toxicol., Vol. 22, (1984), pp. 140–144.
  • [27] H. Westerblad, D.G. Allen and J. Lännergren: “Muscle fatigue: Lactic acid or inorganic phosphate the major cause?”, News Physiol. Sci., Vol. 17, (2002), pp. 17–21.
  • [28] D. Tricarico, M. Barbieri, M. Mele, G. Carbonara and D. Conte Camerino: “Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats”, FASEB J., Vol. 18, (2004), pp. 760–761.
  • [29] M. DeCramer, V. DeBock and R. Dom: “Functional and histologic picture of steroidinduced myopathy in chronic obstructive pulmonary disease”, Am. J. Respir. Crit. Care Med. Vol. 153, (1996), pp. 1958–1964.
  • [30] G.S. Longobardo, B. Gothe, M.D. Goldman and N.S. Cherniack: “Sleep apnea considered as a control system instability”, Respir. Physiol., Vol. 50, (1982), pp. 311–333. http://dx.doi.org/10.1016/0034-5687(82)90026-3[Crossref]
  • [31] M.C.K. Khoo: “Determinants of ventilatory instability and variability”, Respir. Physiol., Vol. 122, (2000), pp. 167–182. http://dx.doi.org/10.1016/S0034-5687(00)00157-2[Crossref]
  • [32] M. Younes, M. Ostrowski, W. Thompson, C. Leslie and W. Shewchuk: “Chemical control stability in patients with obstructive sleep apnea”, Am. J. Respir. Crit. Care Med., Vol. 163, (2001), pp. 1181–1190.
  • [33] J.A. Dempsey, C.A. Smith, T. Przybylowski, B. Chenuel, A. Xie, H. Nakayama and J.B. Skatrud: “The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep”, J. Physiol. (Lond.), Vol. 560, (2004), pp. 1–11. http://dx.doi.org/10.1113/jphysiol.2004.072371[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11536-006-0034-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.