Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 1 | 17-31
Tytuł artykułu

Stability characteristic of hypersonic flow over a blunt wedge under freestream pulse wave

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the stability characteristic of hypersonic flow under the action of a freestream pulse wave, a high-order finite difference method was employed to do direction numerical simulation (DNS) of hypersonic unsteady flow over an 8° half-wedge-angle blunt wedge with freestream slow acoustic wave. The evolution of disturbance wave modes in the boundary layer under a pulse wave and a continuous wave are compared, and the wall temperature effect on the hypersonic boundary layer stability for a pulse wave disturbance is discussed. Results show that, both for a pulse wave and a continuous wave in freestream, the disturbance waves inside the nose boundary layer are mainly a fundamental mode; the Fourier amplitude of pressure disturbance mode in the boundary layer for a pulse wave is far less than that for a continuous wave, and the band frequency of the former is wider than that of the latter. All disturbance modes decay rapidly along the streamwise in the nose boundary layer. In the non-nose boundary layer, the dominant mode is transferred from fundamental mode into second harmonic. The transformation of dominant mode for a pulse wave appears much earlier than that for a continuous wave. Different frequency disturbance modes present different changes along streamline in the boundary layer, and the frequency band narrows around the second harmonic mode along the streamwise. Keen competition and the transformation of energy exist among different modes in the boundary layer. Wall temperature modifies the stability characteristic of the hypersonic boundary layer, which presents little effect on the development of fundamental modes and cooling wall could accelerates the growth of the high frequency mode as well as the dominant mode transformation.
Wydawca

Czasopismo
Rocznik
Tom
12
Numer
1
Strony
17-31
Opis fizyczny
Daty
wydano
2014-01-01
online
2014-02-02
Twórcy
autor
  • College of Aerospace and Civil Engineering, Harbin Engineering University, Nantong Street 145, 150001, Harbin, China, tangxiaojun2214@163.com
autor
  • College of Aerospace and Civil Engineering, Harbin Engineering University, Nantong Street 145, 150001, Harbin, China
  • College of Aerospace and Civil Engineering, Harbin Engineering University, Nantong Street 145, 150001, Harbin, China
  • College of Aerospace and Civil Engineering, Harbin Engineering University, Nantong Street 145, 150001, Harbin, China, wangzhenqing@hrbeu.edu.cn
autor
  • School of Foreign Languages, Harbin Institute of Technology, West Dazhi Street 92, 150001, Harbin, China
Bibliografia
  • [1] B. P. Harold, C. James, NASA, TN-D1603, 1 (1963)
  • [2] X. Zhong, Y. Ma, J. Fluid Mech. 556, 55 (2006) http://dx.doi.org/10.1017/S0022112006009293[Crossref]
  • [3] S. Aso, K. Hayashi, M. Mizoguchi, AIAA, AIAA2002-0646, 1 (2002)
  • [4] H. Kentaro, A. Shigeru, T. Yasuhiro, Mem. Faculty Engi. 66, 39 (2006)
  • [5] E. M. Hirschel, Basics of Aerothermodynamics (Springer, Berlin, 2010)
  • [6] W. S. Saric, H. L. Reed, E. J. Kerschen, Annu. Rev. Fluid Mech. 34, 291 (2002) http://dx.doi.org/10.1146/annurev.fluid.34.082701.161921[Crossref]
  • [7] H. L. Reed, W. S. Saric, Annu. Rev. Fluid Mech. 28, 389 (1996) http://dx.doi.org/10.1146/annurev.fl.28.010196.002133[Crossref]
  • [8] V. L. Borodulin et al., Theor Comput. Fluid. Dyn. 15, 317 (2002) http://dx.doi.org/10.1007/s001620100054[Crossref]
  • [9] A. Dipankar, T. K. Sengupta, J. Comput. Phys. 215, 245, (2006) http://dx.doi.org/10.1016/j.jcp.2005.10.018[Crossref]
  • [10] Y. S. Kachanov, Eur. J. Mech. B-Fluids. 19, 723 (2000) http://dx.doi.org/10.1016/S0997-7546(00)90102-X[Crossref]
  • [11] S. Bake, A. V. Ivanov, H. H. Fernholz, K. Neemann, Y. S. Kachanov, Eur. J. Mech. B-Fluids. 21, 29 (2002) http://dx.doi.org/10.1016/S0997-7546(01)01156-6[Crossref]
  • [12] M. W. Johnson, Int. J. Heat Fluid Flow. 32, 392 (2011) http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.11.005[Crossref]
  • [13] L. M. Mack, AGARD, Rep. No. 709, 3–1 (1984)
  • [14] X. Liang, X. L. Li, D. X. Fu, Y. W. Ma, Comput. Fluids. 39, 359 (2010) http://dx.doi.org/10.1016/j.compfluid.2009.09.015[Crossref]
  • [15] M. N. Kogan, V. G. Shumilkin, M. V. Ustinov, S. V. Zhigulev, Eur. J. Mech. B-Fluids. 20, 813 (2001) http://dx.doi.org/10.1016/S0997-7546(01)01145-1[Crossref]
  • [16] X. W. Wang, X. L. Zhong, Y. B. Ma, AIAA J. 49, 1336 (2011) http://dx.doi.org/10.2514/1.J050173[Crossref]
  • [17] K. F. Stetson, R. Kimmel, AIAA, AIAA93-0896, 1 (1993)
  • [18] Y. B. Ma, X. L. Zhong, J. Fluid Mech. 488, 31 (2003) http://dx.doi.org/10.1017/S0022112003004786[Crossref]
  • [19] A. J. Laderman, AIAA J. 16, 723 (1978) http://dx.doi.org/10.2514/3.7570[Crossref]
  • [20] B. U. Reinartz, J. V. Keuk, T. Coratekin, J. Ballmann, AIAA, AIAA2002-0506, 1 (2002)
  • [21] K. F. Stentson, AFSC Wright-Patterson Air Force Base, AFWAL-TR-80-3062, 1 (1980)
  • [22] L. Brown, C. Fischer, R. R. Boyce, B. Reinartz, H. Olivier, Shock Waves 2, 1231(2009) http://dx.doi.org/10.1007/978-3-540-85181-3_70[Crossref]
  • [23] K. Kara, P. Balakumar, O. A. Kandil, AIAA J. 49, 593 (2011) http://dx.doi.org/10.2514/1.J050032[Crossref]
  • [24] G. S. Jiang, C. W. Shu, J. Comput. Phys. 126, 202 (1996) http://dx.doi.org/10.1006/jcph.1996.0130[Crossref]
  • [25] M. M. Rai, T. B. Gatski, G. Erlebacher, AIAA95-0583 (1995)
  • [26] K. KARA, P. Balakumar, O. A. Kandil, AIAA, AIAA2007-945, 1 (2007)
  • [27] J. Steger, R. F. Warming, J. Comput. Phys. 40, 263 (1981) http://dx.doi.org/10.1016/0021-9991(81)90210-2[Crossref]
  • [28] P. Balakumar, AIAA, AIAA2007-4491, 1 (2007)
  • [29] C. J. Xu, R. Pasquetti, J. Comput. Phys. 196, 680 (2004) http://dx.doi.org/10.1016/j.jcp.2003.11.009[Crossref]
  • [30] A. M. Blokhin, Le Matematiche 57, 3 (2002)
  • [31] A. Prakash, N. Parsons, X. Wang, X. Zhong, J. Comput. Phys. 230, 8474 (2011) http://dx.doi.org/10.1016/j.jcp.2011.08.001[Crossref]
  • [32] R. K. Lobb, Naval Ordnance LabWhite Oak MD, AD0284378, 519 (1962)
  • [33] Y. D. Zhang, D. X. Fu, Y. W. Ma, X. L. Li, Sci. China G. 51, 1682 (2008) http://dx.doi.org/10.1007/s11433-008-0164-9[Crossref]
  • [34] I. V. Egorov, A. V. Fedorov, V. G. Soudakov, Theor. Comput. Fluid Dyn. 20, 41 (2006) http://dx.doi.org/10.1007/s00162-005-0001-y[Crossref]
  • [35] W. S. Saric, H. L. Reed, E. J. Kerschen, Annu. Rev. Fluid Mech. 34, 291 (2002) http://dx.doi.org/10.1146/annurev.fluid.34.082701.161921[Crossref]
  • [36] L. M. Mack, AIAA J. 13, 278 (1975) http://dx.doi.org/10.2514/3.49693[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0421-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.