Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 1 | 116-123
Tytuł artykułu

A theoretical forecast of the hydrogen bond changes in the electronic excited state for BN and its derivatives

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relationship between electronic spectral shifts and hydrogen-bonding dynamics in electronically excited states of the hydrogen-bonded complex is put forward. Hydrogen bond strengthening will induce a redshift of the corresponding electronic spectra, while hydrogen bond weakening will cause a blueshift. Time-dependent density function theory (TDDFT) was used to study the excitation energies in both singlet and triplet electronically excited states of Benzonitrile (BN), 4-aminobenzonitrile (ABN), and 4-dimethylaminobenzonitrile (DMABN) in methanol solvents. Only the intermolecular hydrogen bond C≡N...H-O was involved in our system. A fairly accurate forecast of the hydrogen bond changes in lowlying electronically excited states were presented in light of a very thorough consideration of their related electronic spectra. The deduction we used to depict the trend of the hydrogen bond changes in excited states could help others understand hydrogen-bonding dynamics more effectively.
Wydawca

Czasopismo
Rocznik
Tom
10
Numer
1
Strony
116-123
Opis fizyczny
Daty
wydano
2012-02-01
online
2011-12-03
Twórcy
autor
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
autor
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China, haoce_dlut@126.com
autor
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
autor
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
autor
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
Bibliografia
  • [1] K.-L. Han, G.-J. Zhao, Hydrogen bonding and transfer in the excited state (John Wiley & Sons Ltd, Chichester, UK, 2010) http://dx.doi.org/10.1002/9780470669143[Crossref]
  • [2] Y. Yamada, N. Mikami, T. Ebata, P. Natl. Acad. Sci. USA 105, 12690 (2008) http://dx.doi.org/10.1073/pnas.0800354105[Crossref]
  • [3] M. K. Shukla, J. J. Leszczynski, J. Phys. Chem. B 112, 5139 (2008) http://dx.doi.org/10.1021/jp7100557[Crossref]
  • [4] K. S. Kim, K. S. Oh, J. Y. Lee, P. Natl. Acad. Sci. USA 97, 6373 (2000) http://dx.doi.org/10.1073/pnas.97.12.6373[Crossref]
  • [5] H. L. Liu, G Guo, Cent. Eur. J. Phys. 9, 1261 (2011) http://dx.doi.org/10.2478/s11534-011-0028-1[Crossref]
  • [6] R. Jimenez, G. R. Fleming, P. V. Kumar, M. Maroncelli, Nature 369, 471 (1994) http://dx.doi.org/10.1038/369471a0[Crossref]
  • [7] V. P. Zhdanov, Cent. Eur. J. Phys. 9, 909 (2011) http://dx.doi.org/10.2478/s11534-010-0104-y[Crossref]
  • [8] S. B. Suh et al., J. Am. Chem. Soc. 126, 2186 (2004) http://dx.doi.org/10.1021/ja037607a[Crossref]
  • [9] V. P. Zhdanov, Cent. Eur. J. Phys. 9, 1366 (2011) http://dx.doi.org/10.2478/s11534-011-0054-z[Crossref]
  • [10] D. Laage, I. Burghardt, T. Sommerfeld, J. T. Hynes, Chemphyschem 4, 61 (2003) http://dx.doi.org/10.1002/cphc.200390009[Crossref]
  • [11] R. L. Mills, Y. Lu, K. Akhtar, Cent. Eur. J. Phys. 8, 318 (2010) http://dx.doi.org/10.2478/s11534-009-0106-9[Crossref]
  • [12] G.-J. Zhao, B. H. Northrop, P. J. Stang, K.-L. Han, J. Phys. Chem. A 114, 3418 (2010)
  • [13] X. J. Peng et al., J. Am. Chem. Soc. 129, 1500 (2007) http://dx.doi.org/10.1021/ja0643319[Crossref]
  • [14] B. Erdinc, F. Soyalp, H. Akkus, Cent. Eur. J. Phys. 9, 1315 (2011) http://dx.doi.org/10.2478/s11534-011-0036-1[Crossref]
  • [15] F. Yu et al., J. Am. Chem. Soc. 133, 11030 (2011) http://dx.doi.org/10.1021/ja202582x[Crossref]
  • [16] M. D. Roberts, Cent. Eur. J. Phys. 8, 915 (2010) http://dx.doi.org/10.2478/s11534-010-0022-z[Crossref]
  • [17] W. Ling, S.-L. Yan, Cent. Eur. J. Phys. 9, 1084 (2011) http://dx.doi.org/10.2478/s11534-010-0050-8[Crossref]
  • [18] H. F. Wang, M. S. Wang, M. L. Xin, E. F. Liu, C. L. Yang, Cent. Eur. J. Phys. 9, 792 (2011) http://dx.doi.org/10.2478/s11534-010-0099-4[Crossref]
  • [19] A. F. Philip, K. T. Eisenman, G. A. Papadantonakis, W. D. Hoff, Biochemistry-Us 47, 13800 (2008) http://dx.doi.org/10.1021/bi801730y[Crossref]
  • [20] L.-C. Zhou et al., J. Photoch. Photobio. A 187, 305 (2007) http://dx.doi.org/10.1016/j.jphotochem.2006.10.027[Crossref]
  • [21] T. T. Ivancevic, Cent. Eur. J. Phys. 8, 737 (2010) http://dx.doi.org/10.2478/s11534-009-0148-z[Crossref]
  • [22] R.-K. Chen et al., J. Mol. Struct. 876, 102 (2008) http://dx.doi.org/10.1016/j.molstruc.2007.05.045[Crossref]
  • [23] T. S. Chu, K. L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008) http://dx.doi.org/10.1039/b715180b[Crossref]
  • [24] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 113, 4788 (2009)
  • [25] T. S. Chu, Y. Zhang, K. L. Han, Int. Rev. Phys. Chem. 25, 201 (2006) http://dx.doi.org/10.1080/01442350600677929[Crossref]
  • [26] M. D. Roberts, Cent. Eur. J. Phys. 9, 1016 (2011) http://dx.doi.org/10.2478/s11534-011-0031-6[Crossref]
  • [27] G. J. Zhao et al., J. Phys. Chem. A 115, 6390 (2011)
  • [28] S. Xiao, L. Tang, H. Wang, Cent. Eur. J. Phys. 9, 1077 (2011) http://dx.doi.org/10.2478/s11534-011-0008-5[Crossref]
  • [29] K. L. Han, G.Z. He, J. Photoch. Photobiol. C 8, 55 (2007) http://dx.doi.org/10.1016/j.jphotochemrev.2007.03.002[Crossref]
  • [30] W. Ling, S.-L. Yan, Cent. Eur. J. Phys. 9, 1084 (2011) http://dx.doi.org/10.2478/s11534-010-0050-8[Crossref]
  • [31] G. J. Zhao, K. L. Han, P. J. Stang, J. Chem. Theory Comput. 5, 1955 (2009) http://dx.doi.org/10.1021/ct900216m[Crossref]
  • [32] V. R. Pedireddi, S. Chatterjee, A. Ranganathan, C. N. R. Rao, J. Am. Chem. Soc. 119, 10867 (1997) http://dx.doi.org/10.1021/ja972289z[Crossref]
  • [33] K. L. Han, G. Z. He, N. Q. Lou, J. Chem. Phys. 105, 8699 (1996) http://dx.doi.org/10.1063/1.472651[Crossref]
  • [34] H. Dube et al., Angew. Chem-Ger. Edit. 120, 2638 (2008) http://dx.doi.org/10.1002/ange.200705180[Crossref]
  • [35] H. Dube et al., Angew. Chem. Int. Edit. 47, 2600 (2008) http://dx.doi.org/10.1002/anie.200705180[Crossref]
  • [36] K. Gaal-Nagy, Cent. Eur. J. Phys. 8, 833 (2010) http://dx.doi.org/10.2478/s11534-009-0167-9[Crossref]
  • [37] S. M. Borisov, O. S. Wolfbeis, Chem. Rev. 108, 423 (2008) http://dx.doi.org/10.1021/cr068105t[Crossref]
  • [38] G. F. Wei, W.-C. Qiang, W.-L. Chen, Cent. Eur. J. Phys. 8, 574 (2010) http://dx.doi.org/10.2478/s11534-009-0108-7[Crossref]
  • [39] L. Zhan, K. Hu, Y. Tang, Cent. Eur. J. Phys. 8, 672 (2010) http://dx.doi.org/10.2478/s11534-009-0114-9[Crossref]
  • [40] G.-J. Zhao, K.-L. Han, Chemphyschem 9, 1842 (2008) http://dx.doi.org/10.1002/cphc.200800371[Crossref]
  • [41] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 111, 2469 (2007)
  • [42] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 113, 14329 (2009)
  • [43] G.-J. Zhao, K.-L. Han, J. Chem. Phys. 127, 024306 (2007) http://dx.doi.org/10.1063/1.2752808[Crossref]
  • [44] G.-J. Zhao, J.-Y. Liu, L.-C. Zhou, K.-L. Han, J. Phys. Chem. B 111, 8940 (2007)
  • [45] G.-J. Zhao, K.-L. Han, In: A. Sánchez, S. J. Gutierrez, (Eds.), Photochemistry research progress (Nova Science Publishers, New York, 2008) 161
  • [46] G.-J. Zhao, K.-L. Han, Biophys. J. 94, 38 (2008) http://dx.doi.org/10.1529/biophysj.107.113738[Crossref]
  • [47] G.-J. Zhao et al., Chem.-Eur. J. 14, 6935 (2008) http://dx.doi.org/10.1002/chem.200701868[Crossref]
  • [48] S. Chai et al., Phys. Chem. Chem. Phys. 11, 4385 (2009) http://dx.doi.org/10.1039/b816589k[Crossref]
  • [49] G.-J. Zhao, K.-L. Han, J. Comput. Chem. 29, 2010 (2008) http://dx.doi.org/10.1002/jcc.20957[Crossref]
  • [50] G.-J. Zhao, B. H. Northrop, K.-L. Han, P. J. Stang, J. Phys. Chem. A 114, 9007 (2010)
  • [51] J. R. Reimers, L. E. Hall, J. Am. Chem. Soc. 121, 3730 (1999) http://dx.doi.org/10.1021/ja983878n[Crossref]
  • [52] S. S. Andrews, S. G. Boxer, J. Phys. Chem. A 104, 11853 (2000)
  • [53] C. Y. Huang, T. Wang, F. Gai, Chem. Phys. Lett. 371, 731 (2003) http://dx.doi.org/10.1016/S0009-2614(03)00353-1[Crossref]
  • [54] Z. Getahun, C. Y. Huang, T. Wang, B. De Leon, W. F. DeGrado, F. Gai, J. Am. Chem. Soc. 125, 405 (2003) http://dx.doi.org/10.1021/ja0285262[Crossref]
  • [55] K. C. Schultz, L. Supekova, Y. H. Ryu, J. M. Xie, R. Perera, P. G. Schultz, J. Am. Chem. Soc. 128, 13984 (2006) http://dx.doi.org/10.1021/ja0636690[Crossref]
  • [56] S. Mukherjee, P. Chowdhury, W. F. DeGrado, F. Gai, Langmuir 23, 11174 (2007) http://dx.doi.org/10.1021/la701686g[Crossref]
  • [57] J. H. Choi, K. I. Oh, H. Lee, C. Lee, M. Cho, J. Chem. Phys. 128, 134506 (2008) http://dx.doi.org/10.1063/1.2844787[Crossref]
  • [58] C. Bulliard et al., J. Phys. Chem. A 103, 7766 (1999). http://dx.doi.org/10.1021/jp990922s[Crossref]
  • [59] D. J. Aschaffenburg, R. S. Moog, J. Phys. Chem. B 113, 12736 (2009) http://dx.doi.org/10.1021/jp905802a[Crossref]
  • [60] A. Mordzinski, A. L. Sobolewski, D. H. Levy, J. Phys. Chem. A 101, 8221 (1997)
  • [61] A. L. Sobolewski, W. Domcke, Chem. Phys. Lett. 250, 428 (1996) http://dx.doi.org/10.1016/0009-2614(96)00014-0[Crossref]
  • [62] E. Lippert et al., Angew. Chem.-Ger. Edit. 73, 695 (1961) http://dx.doi.org/10.1002/ange.19610732103[Crossref]
  • [63] E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, J. A. Miehe, Adv. Chem. Phys. 68, 1 (1987)
  • [64] C. J. Joödicke, H. P. Lüthi, J. Am. Chem. Soc 125, 252 (2003) http://dx.doi.org/10.1021/ja020361+[Crossref]
  • [65] Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 103, 3899 (2003) http://dx.doi.org/10.1021/cr940745l[Crossref]
  • [66] J.-S. Yang, K.-L. Liau, C.-M. Wang, C.-Y. Hwang, J. Am. Chem. Soc. 126, 12325 (2004) http://dx.doi.org/10.1021/ja047604d[Crossref]
  • [67] K. A. Zachariasse, S. I. Druzhinin, W. Bosch, R. Machinek, J. Am. Chem. Soc. 126, 1705 (2004) http://dx.doi.org/10.1021/ja037544w[Crossref]
  • [68] A. Köhn, C. Hättig, J. Am. Chem. Soc. 126, 7399 (2004) http://dx.doi.org/10.1021/ja0490572[Crossref]
  • [69] D. Rappoport, F. Furche, J. Am. Chem. Soc. 126, 1277 (2004) http://dx.doi.org/10.1021/ja037806u[Crossref]
  • [70] C. J. Jamorski, M. E. Casida, J. Phys. Chem. B 108, 7132 (2004)
  • [71] A. D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913[Crossref]
  • [72] A. Schäsfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994) http://dx.doi.org/10.1063/1.467146[Crossref]
  • [73] M. Ray, Y. Nakao, H. Sato, H. Sakaba, S. Sakaki, J. Am. Chem. Soc. 128, 11927 (2006) http://dx.doi.org/10.1021/ja0625374[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0073-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.