Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The endoplasmic reticulum (ER) is an organelle that plays a crucial role in protein quality control such as protein folding. Evidence to indicate the involvement of ER in maintaining cellular homeostasis is increasing. However, when cells are exposed to stressful conditions, which perturb ER function, unfolded proteins accumulate leading to ER stress. Cells then activate the unfolded protein response (UPR) to cope with this stressful condition. In the present review, we will discuss and summarize recent advances in research on the basic mechanisms of the UPR. We also discuss the possible involvement of ER stress in the pathogenesis of Alzheimer’s disease (AD). Potential therapeutic opportunities for diseases targeting ER stress is also described.
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-06-30
zaakceptowano
2015-09-01
online
2015-10-19
Twórcy
autor
-
Department of Pharmacotherapy,
Graduate School of Biomedical and Health Sciences, Hiroshima
University, Hiroshima 734-8553, Japan
autor
-
Department of Biomedical Research, Graduate School
of Biomedical and Health Sciences, Hiroshima University, Hiroshima
734-8553, Japan
autor
-
Department of Pharmacotherapy,
Graduate School of Biomedical and Health Sciences, Hiroshima
University, Hiroshima 734-8553, Japan
autor
-
Department of
Pharmacology, Kurume University School of Medicine, Kurume,
Fukuoka 830-0011, Japan
autor
-
Department of
Pharmacology, Kurume University School of Medicine, Kurume,
Fukuoka 830-0011, Japan
Bibliografia
- [1] Koumenis C., Naczki C., Koritzinsky M., Rastani S., DiehlA., Sonenberg N., et al., Regulation of protein synthesis byhypoxia via activation of the endoplasmic reticulum kinasePERK and phosphorylation of the translation initiation factoreIF2α, Mol. Cell Biol., 2002, 22, 7405-7416[Crossref]
- [2] Kumar R., Azam S., Sullivan J.M., Owen C., Cavener D.R.,Zhang P., et al., Brain ischemia and reperfusion activates theeukaryotic initiation factor 2α kinase, PERK, J. Neurochem.,2001, 77, 1418-1421[Crossref]
- [3] Tajiri S., Oyadomari S., Yano S., Morioka M., Gotoh T., HamadaJ.I., et al., Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP, CellDeath Differ., 2004, 11, 403-415[Crossref]
- [4] Ikesugi K., Mulhern M.L., Madson C.J., Hosoya K., Terasaki T.,Kador P.F., et al., Induction of endoplasmic reticulum stress inretinal pericytes by glucose deprivation, Curr. Eye Res., 2006,31, 947-953[Crossref]
- [5] Hosoi T., Inoue Y., Nakatsu K., Matsushima N., Kiyose N.,Shimamoto A., et al., TERT attenuated ER stress-induced celldeath, Biochem. Biophys. Res. Commun., 2014, 447, 378-382
- [6] Hosoi T., Oba T., Ozawa K., ER stress-mediated regulation ofimmune function under glucose-deprived condition in glialcells: up- and down-regulation of PGE2 + IFNγ-induced IL-6 andiNOS expressions, Biochem. Biophys. Res. Commun., 2013,441, 525-528
- [7] Haga N., Saito S., Tsukumo Y., Sakurai J., Furuno A., Tsuruo T.,et al., Mitochondria regulate the unfolded protein responseleading to cancer cell survival under glucose deprivationconditions, Cancer Sci., 2010, 101, 1125-1132[Crossref]
- [8] Outinen P.A., Sood S.K., Pfeifer S.I., Pamidi S., Podor T.J., Li J.,et al., Homocysteine-induced endoplasmic reticulum stressand growth arrest leads to specific changes in gene expressionin human vascular endothelial cells, Blood, 1999, 94, 959-967
- [9] Outinen P.A., Sood S.K., Liaw P.C., Sarge K.D., Maeda N., HirshJ., et al., Characterization of the stress-inducing effects ofhomocysteine, Biochem J. 1998, 332, 213-221
- [10] Werstuck G.H., Lentz S.R., Dayal S., Hossain G.S., Sood S.K.,Shi Y.Y., et al., Homocysteine-induced endoplasmic reticulumstress causes dysregulation of the cholesterol and triglyceridebiosynthetic pathways, J. Clin. Invest., 2001, 107, 1263-1273[Crossref]
- [11] Seshadri S., Beiser A., Selhub J., Jacques P.F., Rosenberg I.H.,D’Agostino R.B., et al., Plasma homocysteine as a risk factor fordementia and Alzheimer’s disease. N. Engl. J. Med., 2002, 346,476-483
- [12] Morris M.S., Homocysteine and Alzheimer’s disease, LancetNeurol., 2003, 2, 425-428[Crossref]
- [13] Hosoi T., Ogawa K., Ozawa K., Homocysteine induces X-boxbindingprotein 1 splicing in the mice brain, Neurochem. Int.,2010, 56, 216-220[Crossref]
- [14] Tang C.H., Chiu Y.C., Huang C.F., Chen Y.W., Chen P.C., Arsenicinduces cell apoptosis in cultured osteoblasts throughendoplasmic reticulum stress, Toxicol. Appl. Pharmacol., 2009,241, 173-181
- [15] Gong Y., Wu J., Huang Y., Shen S., Han X., Nonylphenol inducesapoptosis in rat testicular Sertoli cells via endoplasmicreticulum stress, Toxicol Lett., 2009, 186, 84-95
- [16] Isomura M., Kotake Y., Masuda K., Miyara M., Okuda K., SamizoS., et al., Tributyltin-induced endoplasmic reticulum stressand its Ca(2+)-mediated mechanism, Toxicol. Appl. Pharmacol.2013, 272, 137-146
- [17] Ron D., Walter P., Signal integration in the endoplasmicreticulum unfolded protein response, Nat. Rev. Mol. Cell Biol.2007, 8, 519-529[Crossref]
- [18] Hosoi T., Hyoda K., Okuma Y., Nomura Y., Ozawa K., Akt up- anddown-regulation in response to endoplasmic reticulum stress,Brain Res., 2007, 1152, 27-31
- [19] Hosoi T., Tamubo T., Horie N., Okuma Y., Nomura Y., Ozawa K.,TEK/Tie2 is a novel gene involved in endoplasmic reticulumstress, J. Pharmacol. Sci., 2010, 114, 230-233[Crossref]
- [20] Hosoi T., Ozawa K., Endoplasmic reticulum stress in disease:mechanisms and therapeutic opportunities, Clin Sci (Lond),2010, 118, 19-29[Crossref]
- [21] Hosoi T., Korematsu K., Horie N., Suezawa T., Okuma Y., NomuraY., et al., Inhibition of casein kinase 2 modulates XBP1-GRP78arm of unfolded protein responses in cultured glial cells, PLoSOne, 2012, 7, e40144
- [22] Hyoda K., Hosoi T., Horie N., Okuma Y., Ozawa K., Nomura Y.,PI3K-Akt inactivation induced CHOP expression in endoplasmicreticulum-stressed cells. Biochem. Biophys. Res. Commun.2006, 340, 286-290
- [23] Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., Ron D.,Dynamic interaction of BiP and ER stress transducers in theunfolded-protein response, Nat. Cell Biol., 2000, 2, 326-332
- [24] Carrara M., Prischi F., Nowak P.R., Kopp M.C., Ali M.M.,Noncanonical binding of BiP ATPase domain to Ire1 and Perkis dissociated by unfolded protein CH1 to initiate ER stresssignaling, Elife, 2015, 18, 4
- [25] Shen J., Chen X., Hendershot L., Prywes R., ER stress regulationof ATF6 localization by dissociation of BiP/GRP78 binding andunmasking of Golgi localization signals, Dev. Cell, 2002, 3,99-111[Crossref]
- [26] Credle J.J., Finer-Moore J.S., Papa F.R., Stroud R.M., WalterP., On the mechanism of sensing unfolded protein in theendoplasmic reticulum, Proc. Natl. Acad. Sci. U. S. A. 2005,102, 18773-18784[Crossref]
- [27] Gardner B.M., Walter P., Unfolded proteins are Ire1-activatingligands that directly induce the unfolded protein response,Science, 2011, 333, 1891-1894
- [28] Urano F., Wang X., Bertolotti A., Zhang Y., Chung P., HardingH.P., et al., Coupling of stress in the ER to activation of JNKprotein kinases by transmembrane protein kinase IRE1,Science, 2000, 287, 664-666
- [29] Ogata M., Hino S., Saito A., Morikawa K., Kondo S., KanemotoS., et al., Autophagy is activated for cell survival afterendoplasmic reticulum stress, Mol. Cell Biol., 2006, 26,9220-9231[Crossref]
- [30] Nishitoh H., Matsuzawa A., Tobiume K., Saegusa K., Takeda K.,Inoue K., et al., ASK1 is essential for endoplasmic reticulumstress-induced neuronal cell death triggered by expandedpolyglutamine repeats, Genes Dev., 2002, 16, 1345-1355
- [31] Groenendyk J., Peng Z., Dudek E., Fan X., Mizianty M.J., DufeyE., et al., Interplay between the oxidoreductase PDIA6 andmicroRNA-322 controls the response to disrupted endoplasmicreticulum calcium homeostasis, Sci. Signal, 2014, 7, ra54
- [32] Yoshida H., Haze K., Yanagi H., Yura T., Mori K., Identification ofthe cis-acting endoplasmic reticulum stress response elementresponsible for transcriptional induction of mammalianglucose-regulated proteins. Involvement of basic leucine zippertranscription factors, J. Biol. Chem. 1998, 273, 33741-33749
- [33] Hollien J., Weissman J.S., Decay of endoplasmic reticulumlocalizedmRNAs during the unfolded protein response,Science, 2006, 313, 104-107
- [34] Pavitt G.D., Ramaiah K.V., Kimball S.R., Hinnebusch A.G., eIF2independently binds two distinct eIF2B subcomplexes thatcatalyze and regulate guanine-nucleotide exchange, GenesDev., 1998, 12, 514-526
- [35] Ma Y., Hendershot L.M., Delineation of a negative feedbackregulatory loop that controls protein translation during endoplasmic reticulum stress, J. Biol. Chem., 2003, 278,34864-34873
- [36] Brush M.H., Weiser D.C., Shenolikar S., Growth arrest andDNA damage-inducible protein GADD34 targets proteinphosphatase 1α to the endoplasmic reticulum and promotesdephosphorylation of the α subunit of eukaryotic translationinitiation factor 2, Mol. Cell Biol., 2003, 23, 1292-1303
- [37] Novoa I., Zhang Y., Zeng H., Jungreis R., Harding H.P., Ron D.,Stress-induced gene expression requires programmed recoveryfrom translational repression, EMBO J., 2003, 22, 1180-1187[Crossref]
- [38] Harding H.P., Zeng H., Zhang Y., Jungries R., Chung P.,Plesken H., et al., Diabetes mellitus and exocrine pancreaticdysfunction in perk-/- mice reveals a role for translationalcontrol in secretory cell survival, Mol. Cell, 2001, 7, 1153-1163[Crossref]
- [39] Jousse C., Oyadomari S., Novoa I., Lu P., Zhang Y., Harding H.P.,et al., Inhibition of a constitutive translation initiation factor 2αphosphatase, CReP, promotes survival of stressed cells, J. CellBiol., 2003, 163, 767-775
- [40] Haze K., Yoshida H., Yanagi H., Yura T., Mori K., Mammaliantranscription factor ATF6 is synthesized as a transmembraneprotein and activated by proteolysis in response toendoplasmic reticulum stress, Mol Biol Cell. 1999, 10,3787-3799[Crossref]
- [41] Sato Y., Nadanaka S., Okada T., Okawa K., Mori K., Luminaldomain of ATF6 alone is sufficient for sensing endoplasmicreticulum stress and subsequent transport to the Golgiapparatus, Cell Struct. Funct., 2011, 36, 35-47[Crossref]
- [42] Shen J., Chen X., Hendershot L., Prywes R. et al., ER stressregulation of ATF6 localization by dissociation of BiP/GRP78binding and unmasking of Golgi localization signals, Dev. Cell2002, 3, 99-111[Crossref]
- [43] Yoshida H., Matsui T., Yamamoto A., Okada T., Mori K., XBP1mRNA is induced by ATF6 and spliced by IRE1 in response toER stress to produce a highly active transcription factor, Cell,2001, 107, 881-891[Crossref]
- [44] Kondo S., Murakami T., Tatsumi K., Ogata M., Kanemoto S.,Otori K., et al., OASIS, a CREB/ATF-family member, modulatesUPR signalling in astrocytes, Nat. Cell Biol. 2005, 7, 186-194[Crossref]
- [45] Kondo S., Saito A., Hino S., Murakami T., Ogata M., KanemotoS., et al., BBF2H7, a novel transmembrane bZIP transcriptionfactor, is a new type of endoplasmic reticulum stresstransducer, Mol. Cell Biol. 2007, 27, 1716-1729[Crossref]
- [46] Zhang K., Shen X., Wu J., Sakaki K., Saunders T., RutkowskiD.T., et al., Endoplasmic reticulum stress activates cleavageof CREBH to induce a systemic inflammatory response, Cell,2006, 124, 587-599[Crossref]
- [47] Hoozemans J.J., Veerhuis R., Van Haastert E.S., Rozemuller J.M.,Baas F., Eikelenboom P., et al., The unfolded protein responseis activated in Alzheimer’s disease, Acta Neuropathol., 2005,110, 165-172[Crossref]
- [48] Hoozemans J.J., van Haastert E.S., Nijholt D.A., Rozemuller A.J.,Eikelenboom P., Scheper W., The unfolded protein responseis activated in pretangle neurons in Alzheimer’s diseasehippocampus, Am. J. Pathol., 2009, 174, 1241-1251[Crossref]
- [49] Nakagawa T., Zhu H., Morishima N., Li E., Xu J., Yankner B.A.,et al., Caspase-12 mediates endoplasmic-reticulum-specificapoptosis and cytotoxicity by amyloid-β. Nature, 2000, 403,98-103
- [50] Hitomi J., Katayama T., Eguchi Y., Kudo T., Taniguchi M., KoyamaY., et al., Involvement of caspase-4 in endoplasmic reticulumstress-induced apoptosis and Abeta-induced cell death, J. CellBiol., 2004, 165, 347-356
- [51] Ohta K., Mizuno A., Li S., Itoh M., Ueda M., Ohta E., et al.,Endoplasmic reticulum stress enhances γ-secretase activity,Biochem. Biophys. Res. Commun. 2011, 416, 362-366
- [52] Katayama T., Imaizumi K., Honda A., Yoneda T., Kudo T., TakedaM., et al., Disturbed activation of endoplasmic reticulum stresstransducers by familial Alzheimer’s disease-linked presenilin-1mutations, J. Biol. Chem. 2001, 276, 43446-43454
- [53] Katayama T., Imaizumi K., Sato N., Miyoshi K., Kudo T., HitomiJ., et al., Presenilin-1 mutations downregulate the signallingpathway of the unfolded-protein response, Nat. Cell Biol.,1999, 1, 479-485
- [54] Tomiyama T., Nagata T., Shimada H., Teraoka R., FukushimaA., Kanemitsu H., et al., A new amyloid beta variant favoringoligomerization in Alzheimer’s-type dementia, Ann. Neurol.,2008, 63, 377-387[Crossref]
- [55] Nishitsuji K., Tomiyama T., Ishibashi K., Ito K., Teraoka R.,Lambert M.P., et al., The E693Delta mutation in amyloidprecursor protein increases intracellular accumulation ofamyloid beta oligomers and causes endoplasmic reticulumstress-induced apoptosis in cultured cells, Am. J. Pathol.2009,174, 957-969[Crossref]
- [56] Kondo T., Asai M., Tsukita K., Kutoku Y., Ohsawa Y., Sunada Y.,et al., Modeling Alzheimer’s disease with iPSCs reveals stressphenotypes associated with intracellular Aβ and differentialdrug responsiveness, Cell Stem Cell, 2013, 12, 487-496[Crossref]
- [57] Sato N., Hori O., Yamaguchi A., Lambert J.C., Chartier-HarlinM.C., Robinson P.A., et al., A novel presenilin-2 splice variant inhuman Alzheimer’s disease brain tissue, J. Neurochem., 1999,72, 2498-2505
- [58] Sato N., Imaizumi K., Manabe T., Taniguchi M., Hitomi J.,Katayama T., et al., Increased production of beta-amyloidand vulnerability to endoplasmic reticulum stress by anaberrant spliced form of presenilin 2, J. Biol. Chem. 2001, 276,2108-2114
- [59] Uehara T., Kikuchi Y., Nomura Y., Caspase activationaccompanying cytochrome c release from mitochondria ispossibly involved in nitric oxide-induced neuronal apoptosis inSH-SY5Y cells, J. Neurochem., 1999, 72, 196-205
- [60] Nomura Y., Neuronal apoptosis and protection: effects of nitricoxide and endoplasmic reticulum-related proteins, Biol. Pharm.Bull. 2004, 27, 961-963[Crossref]
- [61] Law A., Gauthier S., Quirion R., Say NO to Alzheimer’s disease:the putative links between nitric oxide and dementia of theAlzheimer’s type, Brain Res. Brain Res. Rev., 2001, 35, 73-96[Crossref]
- [62] Uehara T., Nakamura T., Yao D., Shi Z.Q., Gu Z., Ma Y., et al.,S-nitrosylated protein-disulphide isomerase links proteinmisfolding to neurodegeneration, Nature, 2006, 441, 513-517
- [63] Lazarov O., Demars M.P., All in the Family: How the APPsRegulate Neurogenesis, Front. Neurosci, 2012, 6, 81
- [64] Casas-Tinto S., Zhang Y., Sanchez-Garcia J., Gomez-VelazquezM., Rincon-Limas D.E., Fernandez-Funez P., The ER stress factorXBP1s prevents amyloid-β neurotoxicity, Hum Mol Genet., 2011,20, 2144-2160[Crossref]
- [65] Reinhardt S., Schuck F., Grösgen S., Riemenschneider M.,Hartmann T., Postina R., et al., Unfolded protein responsesignaling by transcription factor XBP-1 regulates ADAM10 andis affected in Alzheimer’s disease, FASEB J. 2014, 28, 978-997[Crossref]
- [66] Kuhn P.H., Wang H., Dislich B., Colombo A., Zeitschel U., EllwartJ.W., et al., ADAM10 is the physiologically relevant, constitutivealpha-secretase of the amyloid precursor protein in primaryneurons, EMBO J. 2010, 29, 3020-3032
- [67] Jorissen E., Prox J., Bernreuther C., Weber S., SchwanbeckR., Serneels L., et al., The disintegrin/metalloproteinaseADAM10 is essential for the establishment of the brain cortex, JNeurosci. 2010, 30, 4833-4844[Crossref]
- [68] Ring S., Weyer S.W., Kilian S.B., Waldron E., Pietrzik C.U.,Filippov M.A., et al., The secreted β-amyloid precursor proteinectodomain APPsα is sufficient to rescue the anatomical,behavioral, and electrophysiological abnormalities ofAPP-deficient mice, J. Neurosci., 2007, 27, 7817-7826[Crossref]
- [69] Mattson M.P., Cheng B., Culwell A.R., Esch F.S., LieberburgI., Rydel R.E., Evidence for excitoprotective and intraneuronalcalcium-regulating roles for secreted forms of the beta-amyloidprecursor protein, Neuron 1993, 10, 243-254[Crossref]
- [70] Caillé I., Allinquant B., Dupont E., Bouillot C., Langer A., MüllerU., et al., Soluble form of amyloid precursor protein regulatesproliferation of progenitors in the adult subventricular zone.Development, 2004, 131, 2173-2181
- [71] Suh J., Choi S.H., Romano D.M., Gannon M.A., Lesinski A.N.,Kim D.Y., et al., ADAM10 missense mutations potentiateβ-amyloid accumulation by impairing prodomain chaperonefunction, Neuron, 2013, 80, 385-401
- [72] Ricobaraza A., Cuadrado-Tejedor M., Marco S., Pérez-OtañoI., García-Osta A., Phenylbutyrate rescues dendritic spineloss associated with memory deficits in a mouse model ofAlzheimer disease. Hippocampus, 2012, 22, 1040-1050[Crossref]
- [73] Liu S.Y., Wang W., Cai Z.Y., Yao L.F., Chen Z.W., Wang C.Y., etal., Polymorphism -116C/G of human X-box-binding protein 1promoter is associated with risk of Alzheimer’s disease, CNSNeurosci. Ther., 2013, 19, 229-234[Crossref]
- [74] Kakiuchi C., Iwamoto K., Ishiwata M., Bundo M., Kasahara T.,Kusumi I., et al., Impaired feedback regulation of XBP1 as agenetic risk factor for bipolar disorder, Nat. Genet. 2003, 35,171-175[Crossref]
- [75] Chang R.C., Wong A.K., Ng H.K., Hugon J., Phosphorylationof eukaryotic initiation factor-2α (eIF2α) is associated withneuronal degeneration in Alzheimer’s disease. Neuroreport,2002, 13, 2429-2432[Crossref]
- [76] Page G., Rioux Bilan A., Ingrand S., Lafay-Chebassier C., PainS., Perault Pochat M.C., et al., Activated double-strandedRNA-dependent protein kinase and neuronal death in modelsof Alzheimer’s disease, Neuroscience, 2006, 139, 1343-1354
- [77] Kim H.S., Choi Y., Shin K.Y., Joo Y., Lee Y.K,. Jung S.Y., etal., Swedish amyloid precursor protein mutation increasesphosphorylation of eIF2alpha in vitro and in vivo, J. Neurosci.Res. 2007, 85, 1528-1537[Crossref]
- [78] O’Connor T., Sadleir K.R., Maus E., Velliquette R.A., Zhao J.,Cole S.L., et al., Phosphorylation of the translation initiationfactor eIF2alpha increases BACE1 levels and promotes amyloidogenesis,Neuron, 2008, 60, 988-1009[Crossref]
- [79] Ma T., Trinh M.A., Wexler A.J., Bourbon C., Gatti E., Pierre P.,et al., Suppression of eIF2α kinases alleviates Alzheimer’sdisease-related plasticity and memory deficits. Nat. Neurosci.2013, 16, 1299-1305[Crossref]
- [80] Costa-Mattioli M., Gobert D., Stern E., Gamache K., ColinaR., Cuello C., et al., eIF2α phosphorylation bidirectionallyregulates the switch from short- to long-term synaptic plasticityand memory, Cell, 2007, 129, 195-206
- [81] Kaneko M., Koike H., Saito R., Kitamura Y., Okuma Y., NomuraY., Loss of HRD1-mediated protein degradation causes amyloidprecursor protein accumulation and amyloid-beta generation,J. Neurosci. 2010, 30, 3924-3932[Crossref]
- [82] Jung E.S., Hong H., Kim C., Mook-Jung I., Acute ER stressregulates amyloid precursor protein processing throughubiquitin-dependent degradation, Sci. Rep. 2015, 5, 8805[Crossref]
- [83] Saito R., Kaneko M., Kitamura Y., Takata K., Kawada K., OkumaY., et al., Effects of oxidative stress on the solubility of HRD1, aubiquitin ligase implicated in Alzheimer’s disease, PLoS One.2014, 9, e94576[Crossref]
- [84] Yang Y., Turner R.S., Gaut J.R., The chaperone BiP/GRP78 bindsto amyloid precursor protein and decreases Aβ40 and Aβ42secretion, J. Biol. Chem., 1998, 273, 25552-25555
- [85] Hoshino T., Nakaya T., Araki W., Suzuki K., Suzuki T., MizushimaT., Endoplasmic reticulum chaperones inhibit the production ofamyloid-beta peptides, Biochem J. 2007, 402, 581-589
- [86] Abisambra J.F., Jinwal U.K., Blair L.J., O’Leary J.C. 3rd, Li Q.,Brady S., et al., Tau accumulation activates the unfoldedprotein response by impairing endoplasmic reticulumassociateddegradation, J. Neurosci., 2013, 33, 9498-9507[Crossref]
- [87] Janssens S., Pulendran B., Lambrecht B.N., Emerging functionsof the unfolded protein response in immunity, Nat. Immunol.,2014, 15, 910-919[Crossref]
- [88] Iwakoshi N.N., Lee A.H., Vallabhajosyula P., Otipoby K.L.,Rajewsky K., Glimcher L.H., Plasma cell differentiation and theunfolded protein response intersect at the transcription factorXBP-1, Nat. Immunol., 2003, 4, 321-329[Crossref]
- [89] Martinon F., Chen X., Lee A.H., Glimcher L.H., TLR activationof the transcription factor XBP1 regulates innate immuneresponses in macrophages, Nat. Immunol., 2010, 11, 411-418[Crossref]
- [90] Kemp K.L., Lin Z., Zhao F., Gao B., Song J., Zhang K., et al., Theserine-threonine kinase inositol-requiring enzyme 1α (IRE1α)promotes IL-4 production in T helper cells, J. Biol. Chem. 2013,288, 33272-33282
- [91] Xue X., Piao J.H., Nakajima A., Sakon-Komazawa S., KojimaY., Mori K., et al., Tumor necrosis factor α (TNFα) induces theunfolded protein response (UPR) in a reactive oxygen species(ROS)-dependent fashion, and the UPR counteracts ROSaccumulation by TNFα, J. Biol. Chem., 2005, 280, 33917-33925
- [92] Lin W., Harding H.P., Ron D., Popko B., Endoplasmic reticulumstress modulates the response of myelinating oligodendrocytesto the immune cytokine interferon-γ, J. Cell Biol., 2005,169, 603-612
- [93] Heppner F.L., Ransohoff R.M., Becher B., Immune attack: therole of inflammation in Alzheimer disease, Nat. Rev. Neurosci.,2015, 16, 358-372[Crossref]
- [94] von Zahn J., Möller T., Kettenmann H., Nolte C., Microglialphagocytosis is modulated by pro- and anti-inflammatorycytokines, Neuroreport, 1997, 8, 3851-3856[Crossref]
- [95] Chan A., Magnus T., Gold R., Phagocytosis of apoptoticinflammatory cells by microglia and modulation by differentcytokines: mechanism for removal of apoptotic cells in theinflamed nervous system, Glia, 2001, 33, 87-95[Crossref]
- [96] Paresce D.M., Ghosh R.N., Maxfield F.R., Microglial cellsinternalize aggregates of the Alzheimer’s disease amyloidbeta-protein via a scavenger receptor, Neuron, 1996, 17,553-565[Crossref]
- [97] Kakimura J., Kitamura Y., Takata K., Umeki M., Suzuki S.,Shibagaki K., et al., Microglial activation and amyloid-betaclearance induced by exogenous heat-shock proteins, FASEBJ. 2002, 16, 601-603
- [98] Liu B., Gao H.M., Wang J.Y., Jeohn G.H., Cooper C.L., HongJ.S., Role of nitric oxide in inflammation-mediated neurodegeneration,Ann. N. Y. Acad. Sci. 2002, 962, 318-331
- [99] Hosoi T., Ozawa K., Molecular approaches to the treatment,prophylaxis, and diagnosis of Alzheimer’s disease:endoplasmic reticulum stress and immunological stress inpathogenesis of Alzheimer’s disease, J. Pharmacol. Sci. 2012,118, 319-324[Crossref]
- [100] Hosoi T., Honda M., Oba T., Ozawa K., ER stress upregulatedPGE₂/IFNγ-induced IL-6 expression and down-regulated iNOSexpression in glial cells, Sci. Rep. 2013, 3, 3388[Crossref]
- [101] Mosconi L., Pupi A., De Leon M.J., Brain glucose hypometabolismand oxidative stress in preclinical Alzheimer’sdisease, Ann. N. Y. Acad. Sci. 2008, 1147, 180-195
- [102] de Leon M.J., Mosconi L., Blennow K., DeSanti S., ZinkowskiR., Mehta P.D., et al., Imaging and CSF studies in thepreclinical diagnosis of Alzheimer’s disease, Ann. N Y Acad.Sci., 2007, 1097, 114-145
- [103] Zhu Z., Yan J., Jiang W., Yao X.G., Chen J., Chen L., et al.,Arctigenin effectively ameliorates memory impairment inAlzheimer’s disease model mice targeting both β-amyloidproduction and clearance, J. Neurosci., 2013, 33, 13138-13149[Crossref]
- [104] Sekine Y., Zyryanova A., Crespillo-Casado A., Fischer P.M.,Harding H.P., et al., Mutations in a translation initiationfactor identify the target of a memory-enhancing compound,Science, (in press), DOI: 10.1126
- [105] Sidrauski C., Tsai J.C., Kampmann M., Hearn B.R., VedanthamP., Jaishankar P., et al., Pharmacological dimerization andactivation of the exchange factor eIF2B antagonizes theintegrated stress response, Elife, 2015, 4, e07314
- [106] Sidrauski C., Acosta-Alvear D., Khoutorsky A., VedanthamP., Hearn B.R., Li H., et al., Pharmacological brake-release ofmRNA translation enhances cognitive memory, Elife, 2013, 2,e00498
- [107] Halliday M., Radford H., Sekine Y., Moreno J., Verity N., leQuesne J., et al., Partial restoration of protein synthesis ratesby the small molecule ISRIB prevents neurodegenerationwithout pancreatic toxicity, Cell Death Dis., 2015, 6, e1672
- [108] Back S.H., Scheuner D., Han J., Song B., Ribick M., Wang J., etal., Translation attenuation through eIF2α phosphorylationprevents oxidative stress and maintains the differentiatedstate in beta cells, Cell Metab., 2009, 10,13-26[Crossref]
- [109] Burrows J.A., Willis L.K., Perlmutter D.H., Chemicalchaperones mediate increased secretion of mutant alpha1-antitrypsin (α1-AT) Z: A potential pharmacological strategyfor prevention of liver injury and emphysema in α 1-ATdeficiency, Proc Natl Acad Sci U S A., 2000, 97, 1796-1801[Crossref]
- [110] Perlmutter D.H., Chemical chaperones: a pharmacologicalstrategy for disorders of protein folding and trafficking,Pediatr. Res., 2002, 52, 832-836[Crossref]
- [111] de Almeida S.F., Picarote G., Fleming J.V., Carmo-FonsecaM., Azevedo J.E., de Sousa M., Chemical chaperones reduceendoplasmic reticulum stress and prevent mutant HFEaggregate formation, J. Biol. Chem., 2007, 282, 27905-27912
- [112] Hosoi T., Yamaguchi R., Noji K., Matsuo S., Baba S., Toyoda K.,et al., Flurbiprofen ameliorated obesity by attenuating leptinresistance induced by endoplasmic reticulum stress, EMBOMol. Med. 2014, 6, 335-346
- [113] Hosoi T., Toyoda K., Nakatsu K., Ozawa K., Caffeineattenuated ER stress-induced leptin resistance in neurons,Neurosci Lett. 2014, 569, 23-26
- [114] Ricobaraza A., Cuadrado-Tejedor M., Pérez-MediavillaA., Frechilla D., Del Río J., García-Osta A., Phenylbutyrateameliorates cognitive deficit and reduces tau pathology inan Alzheimer’s disease mouse model, Neuropsychopharmacology,2009, 34, 1721-1732[Crossref]
- [115] Cuadrado-Tejedor M., Ricobaraza A.L., Torrijo R., Franco R.,Garcia-Osta A., Phenylbutyrate is a multifaceted drug thatexerts neuroprotective effects and reverses the Alzheimer´sdisease-like phenotype of a commonly used mouse model,Curr Pharm Des., 2013, 19, 5076-5084
- [116] Mimori S., Okuma Y., Kaneko M., Kawada K., Hosoi T., OzawaK., et al., Protective effects of 4-phenylbutyrate derivativeson the neuronal cell death and endoplasmic reticulum stress,Biol. Pharm. Bull., 2012, 35, 84-90[Crossref]
- [117] Mimori S., Okuma Y., Kaneko M., Kawada K., NomuraY., Murakami Y., et al., Discovery of synthetic methoxysubstituted4-phenylbutyric acid derivatives as chemicalchaperons, Chem. Lett. 2013, 42, 1051-1052.[Crossref]
- [118] Mimori S., Ohtaka H., Koshikawa Y., Kawada K., KanekoM., Okuma Y., et al., 4-Phenylbutyric acid protects againstneuronal cell death by primarily acting as a chemicalchaperone rather than histone deacetylase inhibitor, Bioorg.Med. Chem. Lett. 2013, 23, 6015-6018
- [119] Ozcan U., Yilmaz E., Ozcan L., Furuhashi M., Vaillancourt E.,Smith R.O., et al., Chemical chaperones reduce ER stressand restore glucose homeostasis in a mouse model of type 2diabetes, Science, 2006, 313, 1137-1140
- [120] Chen Y., Liu C.P., Xu K.F., Mao X.D., Lu Y.B., Fang L., etal., Effect of taurine-conjugated ursodeoxycholic acidon endoplasmic reticulum stress and apoptosis inducedby advanced glycation end products in cultured mousepodocytes, Am. J. Nephrol. 2008, 28, 1014-1022[Crossref]
- [121] Solá S, Castro RE, Laires PA, Steer CJ, Rodrigues CM. Tauroursodeoxycholicacid prevents amyloid-beta peptide-inducedneuronal death via a phosphatidylinositol 3-kinasedependentsignaling pathway, Mol. Med., 2003, 9, 226-234
- [122] in t’ Veld B.A., Ruitenberg A., Hofman A., Launer L.J., van DuijnC.M., Stijnen T., et al., Nonsteroidal antiinflammatory drugsand the risk of Alzheimer’s disease, N. Engl. J. Med. 2001,345, 1515-1521
- [123] Yamazaki T., Muramoto M., Oe T., Morikawa N., OkitsuO., Nagashima T., et al., Diclofenac, a non-steroidalanti-inflammatory drug, suppresses apoptosis inducedby endoplasmic reticulum stresses by inhibiting caspasesignaling, Neuropharmacology, 2006, 50, 558-567[Crossref]
- [124] Hosoi T., Sasaki M., Baba S., Ozawa K., Effect of pranoprofenon endoplasmic reticulum stress in the primary cultured glialcells, Neurochem. Int., 2009, 54, 1-6[Crossref]
- [125] Ryu E.J., Harding H.P., Angelastro J.M., Vitolo O.V., Ron D.,Greene L.A., Endoplasmic reticulum stress and the unfoldedprotein response in cellular models of Parkinson’s disease, J.Neurosci., 2002, 22, 10690-10698
- [126] Kumar R., Krause G.S., Yoshida H., Mori K., DeGracia D.J.,Dysfunction of the unfolded protein response during global brain ischemia and reperfusion, J. Cereb. Blood Flow Metab.,2003, 23, 462-471
- [127] Harding H.P., Novoa I., Zhang Y., Zeng H., Wek R., Schapira M.,et al., Regulated translation initiation controls stress-inducedgene expression in mammalian cells, Mol. Cell, 2000, 6,1099-1108[Crossref]
- [128] Hosoi T., Sasaki M., Miyahara T., Hashimoto C., Matsuo S.,Yoshii M., et al., Endoplasmic reticulum stress induces leptinresistance, Mol. Pharmacol. 2008, 74, 1610-1619[Crossref]
- [129] Hosoi T., Ozawa K., Possible involvement of endoplasmicreticulum stress in obesity associated with leptin resistance,J. Med. Invest. 2009, 56, 296-298[Crossref]
- [130] Ozcan U., Cao Q., Yilmaz E., Lee A.H., Iwakoshi N.N., OzdelenE., et al., Endoplasmic reticulum stress links obesity, insulinaction, and type 2 diabetes, Science, 2004, 306, 457-461
- [131] Wang M., Kaufman R.J., The impact of the endoplasmicreticulum protein-folding environment on cancerdevelopment, Nat. Rev. Cancer., 2014, 14, 581-597[Crossref]
- [132] Wu J., Kaufman R.J., From acute ER stress to physiologicalroles of the Unfolded Protein Response, Cell Death Differ.,2006, 13, 374-384 [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_ersc-2015-0008