Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed to assess levels of silver nanoparticle residues in eggshells and tissues as well as the levels of selected biochemical parameters and oxidative stress indices in chickens hatched from nanosilver disinfected eggs. The samples included 40 Greenleg Partridge chicks allocated into two groups. The experimental group (group D) consisted of chickens hatched from eggs disinfected with a nanosilver preparation prior to incubation, while the control group (group C) included chickens whose eggs were exposed to UV radiation for disinfection. The eggshells and kidney sections obtained from group D chickens showed a significantly higher silver level compared to group C. For the biochemical parameters, only the uric acid content was higher in group D compared to group C. Analysis of the antioxidative stress biomarkers (superoxide dismutase and catalase), showed a significant increase in group D in relation to group C.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-02-15
zaakceptowano
2015-09-16
online
2015-11-24
Twórcy
- Department of Animal Hygiene and Environment, University of Life Sciences in Lublin, Poland
autor
- Department of Animal Hygiene and Environment, University of Life Sciences in Lublin, Poland
autor
- Department of Animal Hygiene and Environment, University of Life Sciences in Lublin, Poland
autor
- Institute of Inorganic Chemistry and Technology, Cracow University of Technology, 31-155 Kraków, Poland
autor
- Department of Animal Hygiene and Environment, University of Life Sciences in Lublin, Poland
autor
- Department of Animal Hygiene and Environment, University of Life Sciences in Lublin, Poland
autor
- Department of Animal Hygiene and Environment, University of Life Sciences in Lublin, Poland
autor
- Medical University in Lublin, Poland
autor
- Department of Landscape Ecology and Nature Protection, University of Life Sciences in Lublin, Poland
Bibliografia
- [1] Dorea F.C., Cole D.J., Hofacre C., Zamperini K., Mathis D., Doyle M.P., et al., Effect of Salmonella vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations, App. Environ. Microb., 2010, 76, 7820-7825.[WoS]
- [2] Chmielowiec-Korzeniowska A., Krzosek Ł., Tymczyna L., Pyrz M., Drabik A., Bactericidal, fungicidal and virucidal properties of nanosilver. Mode of action and potential application, A revive, Ann. UMCS Sect. EE, 2013, 31, 1-11.
- [3] Li W.R., Xie X.B., Shi Q.S., Zeng H.Y., Ou-Yang Y.S., Chen Y.B., Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli, Appl. Microbiol. Biotechnol., 2010, 85, 1115-1122.[WoS]
- [4] Dobrzański Z., Zygadlik K., Patkowska-Sokoła B., Nowakowski P., Janczak M., Sobczak A., et al., Efficiency of nanosilver and mineral sorbents in reduction of ammonia emission from animal manure, Chem. Industry, 2010, 4, 348-351, (in Polish).
- [5] Gholami-Ahangaran M., Zia-Jahromi N., Nanosilver effects on growth parameters in experimental aflatoxicosis in broiler chickens, Toxicol. Ind. Health. 2013, 29, 121-125.[WoS][Crossref]
- [6] Sawosz, F., Pineda, L.M., Hotowy, A. M., Hyttel, P., Sawosz, E., Szmidt, M., et al., Nanonutrition of chicken embryos. The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle: the effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle, Baltic J. Comp. Clin. Sys. Biolog., 2012, 2, 29-45.
- [7] Fondevila M., Herrer R., Casallas M.C., Abecia L., Ducha J.J., Silver nanoparticles as potential antimicrobial additive for weaned pigs, Anim. Feed Sci. Tech., 2009, 150, 259-269.[WoS]
- [8] Kim Y.S., Kim J.S., Cho H.S., Rha D.S., Kim J.M., Park J.D., et al., Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats, Inhal. Toxicol., 2008, 20, 575-583.[Crossref][WoS]
- [9] Gopinath P., Gogoi S.K., Chattopadhyay A., Gosh S.S., Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy, J. Nanotechn., 2008, 19, doi:10.1088/0957-4484/19/7/075104.[Crossref][WoS]
- [10] Lankveld D.P.K., Oomen A.G., Krystek P., Neigh A., Troost-de Jong A., Noorlander C.W., et al., The kinetics of the tissue distribution of silver nanoparticles of different sizes, Biomaterials, 2010, 31, 8350-8361.[Crossref]
- [11] Arora S., Jain J., Rajwade J.M., Paknilar K.M., Cellular responses induced by silver nanoparticles: in vitro studies, Toxicol. Lett., 2008, 179, 93-100.[WoS]
- [12] Carlson C., Hussian S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.I., et al., Unique cellular interaction of silver nanoparticles: size dependent generation of reactive oxygen species, J. Pchys. Chem. B., 2008, 112, 13608-13619.[WoS]
- [13] Nel A., Xia T., Li N., Toxic potential of materials at the nanolevel, Science, 2006, 311, 622-627.
- [14] Bartosz G., The other face of oxygen, Warsaw, Poland, PWN, 2006, (in Polish).
- [15] Banach M., Kowalski Z., Pulit J., Mode of silver nanoparticle shape modification. Patent Application No P.399209, 17.05.2012, (in Polish).
- [16] Sharma D.C., Dadheech G., Fiza B., Mathur M., Riyat M., Sharma P., Effect of oral ingestion of different forms of silver on tissue content of some essential elements in chicks, Indian J. Clin. Biochem., 2009, 24, 202-204.[Crossref]
- [17] Sung J.H., Ji J.H., Park J.D., Yoon J.U., Kim D.S., Jeon K.S., et al., Subchronic inhalation toxicity of silver nanoparticles, Toxicol. Sci., 2009, 108, 452-461.[Crossref][WoS]
- [18] Park K.; Park E.J.; Chun I.K.; Choi K.; Lee S.H.; Yoon J.; Lee B.C., Bioavailability and toxicokinetics of citratecoated silver nanoparticles in rats, Arch. Pharmacol. Res., 2011, 34, 153–158.[Crossref]
- [19] Farzinpour A., Karashi N., The effects of nanosilver on egg quality traits in laying Japanese quail, Appl. Nanosci., 2013, 3, 95–99.
- [20] Panyala N.R., Peña-Méndez E.M., Havel J., Silver or silver nanoparticles: a hazardous threat to the environment and human health, J. Appl. Biomed., 2008, 6, 117-129.
- [21] Korani M., Rezayat S.M., Gilani K., Arbabi Bidgoli S., Adeli S., Acute and subchronic dermal toxicity of nanosilver in guinea pig, Int. J. Nanomed., 2011, 6, 855-862.[Crossref][WoS]
- [22] Korani M., Rezayat S.M., Arbabi Bidgoli S., Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: Special emphasis to heart, bone and kidney toxicities. Iran J. Pharm. Res. 2013; 3, 511–519.
- [23] Ahmadi J., Irani M., Choobchian M., Pathological study of intestine and liver in broiler chicks after treatment with different levels of silver nanoparticles, World App. Sci. J., 2009, 7, 28-32.
- [24] Loghman A., Iraj S.H., Naghi D.A., Pejman M., Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens, Afr. J. Biotechnol., 2012, 11, 6207-6211.
- [25] Glantzounis K., Tsimoyiannis E.C., Kappas A.M., Galaris D.A., Uric Acid and Oxidative Stress. Curr. Pharm. Des., 2005, 11, 4145-4151.[Crossref]
- [26] Augustyniak A., Skrzydlewska E., L-carnitine in the lipid and protein protection against ethanol-induced oxidative stress, Alcohol., 2009, 43, 217-223.[WoS][Crossref]
- [27] Kłysz B., Członkowska A., Antioxidative activity compounds in ischemic stroke treatment - hopes for the future, Pharmacother. Psychiatr. Neurol., 2013, 3-4, 159-167, (in Polish).
- [28] Hink H.U., Santanam N., Dikalov S., McCann L., Nguyen A.D., Parthasarathy S., et al., Peroxidase properties of extracellular superoxide dismutase: role of uric acid in modulating in vivo activity, Arterioscler. Thromb. Vasc. Biol., 2002, 22, 1402-1408.[Crossref]
- [29] Braham S., Truchliński J., Ognik K., Peroxidation of lipids in rat organs during acute pancreatitis, Med. Wet., 2006, 62, 440-443.
- [30] Haase A., Tentschert J., Jungnickel H., Graf P., Mantion A., Draude F., et al., Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses, J. Phys. Conf. Ser., 2011, 304, 012030.
- [31] Ahamed M., Posgai R., Gorey T.J., Nielsen M., Hussain S.M., Rowe J.J., Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster, Tox. App. Pharmac., 2010, 242, 263-269. [WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0140