Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Microwave Assisted Extraction (MAE) was used to obtain aqueous extracts of Baltic seaweeds. Three different temperatures: 25, 40, 60°C were examined. Algal extracts were characterized in terms of polyphenols, micro- and macroelements, lipids content and antibacterial properties. This is the first study that examines the effect of algal extract obtained by MAE in plant cultivation. The utilitarian properties were checked in the germination tests on Lepidium sativum for three dilutions of extract (0.5, 2.5 and 10%). Results showed that the content of polyphenols in extracts decreased with temperature, whereas the content of micro- and macroalements increased with temperature. The aqueous extracts did not contain fatty acids and did not show inhibitory effect on Escherichia coli and Staphylococcus aureus. Germination tests showed that plants in the experimental groups with an optimal concentration of extract had a higher height, weight, chlorophyll and micro- and macroelement content than plants in the control group. The algal extracts did not significantly influence the morphology of plants as shown in SEM pictures. Results show that algal extracts obtained by MAE have the highest potential applied in agriculture as biostimulants.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-01-26
zaakceptowano
2015-07-27
online
2015-10-02
Twórcy
Bibliografia
- [1] Kadam S.U., Tiwari B.K., O’Donnell C.P., Application of novel extraction technologies for bioactives from marine algae, J. Agric. Food Chem., 2013, 61, 4667−4675.[WoS][Crossref]
- [2] Mäki-Arvela P., Hachemi I., Murzin D.Y., Comparative study of the extraction methods for recovery of carotenoids from algae: extraction kinetics and effect of different extraction parameters, J. Chem. Technol. Biotechnol., 2014, 89, 1607–1626.[WoS][Crossref]
- [3] Wang Y. PhD thesis: Sample preparation/concentration for trace analysis in GC/MS. Faculty of the Virginia Polytechnic Institute and State University. 1997.
- [4] Pasquet V., Chérouvrier J.-R., Farhat F., Thiéry V., Piot J.-M.,. Bérard J.-B, Kaas R., Serive B., Patrice T., Cadoret J.-P., Picot L., Study on the microalgal pigments extraction process: Performance of microwave assisted extraction, Process Biochem., 2011, 46, 59–67.[WoS][Crossref]
- [5] Michalak I., Chojnacka K., Algae as production systems of bioactive compounds, Eng. Life Sci., 2015, 15, 160–176.[WoS][Crossref]
- [6] Zhao L., Chen G., Zhao G., Hu X., Optimization of Microwave-Assisted extraction of astaxanthin from Haematococcus Pluvialis by Response Surface Methodology and antioxidant activities of the extracts, Sep. Sci. Technol., 2009, 44, 243–262.[WoS]
- [7] Luo H.-Y, Wang B., Yu C.-G, Xu Y-F., Optimization of microwave-assisted extraction of polyphenols from Enteromorpha prolifra by orthogonal test, Chinese Her. Med., 2010, 2, 321–325.
- [8] Wang B., Tong G.-Z., Qu Y.-L, Li L., Microwave-assisted extraction and in vitro antioxidant evaluation of polysaccharides from Enteromorpha prolifera, Appl. Mech. Mat., 2011, 79, 204–209.[Crossref]
- [9] Li Z., Wang B., Zhang Q., Qu Y., Xu H., Li G., Preparation and antioxidant property of extract and semipurified fractions of Caulerpa racemosa, J. Appl. Phycol., 2012, 24, 1527–1536.[WoS][Crossref]
- [10] Leonelli C., Mason T.J., Microwave and ultrasonic processing: Now a realistic option for industry, Chem. Eng. Process., 2010, 49, 885–900.[Crossref][WoS]
- [11] Wang L., Weller C., Recent advances in extraction of nutraceuticals from plants, Trends Food Sci. Technol., 2006, 17, 300–312.
- [12] Wilk R., Chojnacka K., Rój E., Górecki H., Technology for preparation of algae extract. Part 1. Raw material, Przem. Chem., 2014, 93(7), 1215–1218 (in Polish).
- [13] Sim K.S., Sri Nurestri A.M., Norhanom A.W., Phenolic content and antioxidant activity of crude and fractionated extracts of Pereskia bleo (Kunth) DC.(Cactaceae), Afr. J. Pharmacy Pharmacol., 2010, 4, 193–201.
- [14] Arnon D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol., 1949, 24, 1–15.[Crossref]
- [15] Michalak I., Marycz K., Basinska K., Chojnacka K., Using SEM-EDX and ICP-OES to investigate the elemental composition of green macroalga Vaucheria sessilis, Sci. World J., 2014, Article ID 891928, http://dx.doi.org/10.1155/2014/891928.[Crossref]
- [16] Haroon A.M., Szaniawska A., Normant M., Janas U., The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Baltic Sea, Oceanologia, 2000, 42, 19–28.
- [17] Szefer P., Skwarzec B., Concentration of elements in some seaweeds from coastal region of the southern Baltic and in the Żarnowiec Lake, Oceanologia, 1988, 25, 87–98.
- [18] Michalak I., Chojnacka K. Multielemental analysis of the biomass of macroalgae from the Baltic Sea by ICP-OES to monitor environmental pollution and establish potential uses of algae, Int. J. Environ. Analyt. Chem., 2009, 89, 583–596.[Crossref]
- [19] Ibañez, E., Herrero, M., Mendiola, J. A., Castro-Puyana, M., Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates, in: Hayes, M. (Ed.), Marine Bioactive Compounds: Sources, Characterization and Applications, Springer Science+BusinessMedia, LLC, New York 2012, pp. 55–98.
- [20] Gireesh R., Haridevi C.K., Salikutty J., Effect of Ulva lactuca extract on growth and proximate composition of Vigna unguiculata L. Walp., J. Res. Biol., 2011, 8, 624–630.
- [21] Möller M., Smith M.L., The significance of the mineral component of seaweed suspensions on lettuce (Lactuca sativa L.) seedling growth, J. Plant Physiol., 1998, 153, 658–663.[Crossref]
- [22] Tierney M.S., Smyth T.J., Hayes M., Soler-Vila A., Croft A.K., Brunton N., Influence of pressurised liquid extraction and solid–liquid extraction methods on the phenolic content and antioxidant activities of Irish macroalgae, Int. J. Food Sci. Technol., 2013, 48, 860–869.[Crossref]
- [23] Hayat K., Hussain S., Abbas S., Farooq U., Ding B.M., Xia S.Q., Jia C.Q., Zhang X.M., Xia W.S., Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro, Sep. Purif. Technol., 2009, 70, 63–70.[Crossref][WoS]
- [24] Christobel J.G., Lipton A.P., Aishwarya M.S., Sarika A.R., Udayakumar A., Antibacterial activity of aqueous extract from selected macroalgae of southwest coast of India, Seaweed Res. Utiln., 2011, 33, 67–75.
- [25] Alghazeer R., Whida F., Abduelrhman E., Gammoudi F., Azwai S., Screening of antibacterial activity in marine green, red and brown macroalgae from the western coast of Libya, Natural Sci., 2013, 5, 7–14.[Crossref]
- [26] Mansuya P., Aruna P., Sridhar S., Kumar J. S., Babu S., Antibacterial activity and qualitative phytochemical analysis of selected seaweeds from Gulf of Mannar region, J. Exper. Sci., 2010, 1, 23–26.
- [27] Selvi M., Selvaraj R., Chidambaram A., Screening for antibacterial activity of macro algae, Seaweed Res. Utiln., 2001, 23, 59–63.
- [28] Hernández-Herrera R.M., Santacruz-Ruvalcaba F., Alberto Ruiz-López M., Norrie J., Hernández-Carmona G., Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.), J. Appl. Phycol., 2014, 26, 619–628.[Crossref][WoS]
- [29] Crouch I.J., van Staden J., Evidence for the presence of plant growth regulators in commercial seaweed products, Plant Growth Regul., 1993, 13, 21–29.[Crossref]
- [30] Srijaya T.C., Pradeep P.J., Chatterji, A., Effect of seaweed extract as an organic fertilizer on the growth enhancement of black mustard plant, J. Coastal Environ., 2010, 1, 137–150.
- [31] Kavipriya R., Dhanalakshmi P.K., Jayashree S., Thangaraju N., Seaweed extract as a biostimulant for legume crop, green gram, J. Ecobiotechnol., 2011, 3, 16−19.
- [32] Michalak I., Tuhy Ł., Chojnacka K., Extraction of seaweed with potassium lye, Przem. Chem., 2014, 93, 771–774 (in Polish).
- [33] Latique S., Chernane H., Mansori M., El Kaoua M., Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety Paulista) under hydroponic system, Eur. Sci. J., 2013, 9, 174–191.
- [34] Shaaban M.M., El-Saady A.-K.M., El-Sayed A.E.-K.B., Green microalgae water extract and micronutrients foliar application as promoters to nutrient balance and growth of wheat plants, J. Am. Sci., 2010, 6, 631–636.
- [35] Pise N.M., Sabale A.B., Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum L, J. Phytol., 2010, 2, 50–56.
- [36] Qv X.-Y., Zhou Q.-F., Jiang J.-G., Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis, J. Sep. Sci., 2014, 37, 2991–2999.[WoS][Crossref]
- [37] Cravotto G., Boffa L., Mantegna S., Perego P., Avogadro M., Cintas P., Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves, Ultrasonics Sonochem., 2008, 15, 898–902.[WoS][Crossref]
- [38] Dai Y.-M., Chen K.-T., Chen C.-C., Study of the microwave lipid extraction from microalgae for biodiesel production, Chem. Eng. J., 2014, 250, 267–273.[WoS][Crossref]
- [39] Xiao X.-H., Yuan Z.-Q., Li G.-K., Preparation of phytosterols and phytol from edible marine algae by microwave-assisted extraction and high-speed counter-current chromatography, Sep. Pur. Technol., 2013, 104, 284–289.[Crossref]
- [40] Xiao X., Si X., Yuan Z., Xu X., Li G., Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography, J. Sep. Sci., 2012, 35, 2313–2317.[Crossref][WoS]
- [41] Rodriguez-Jasso R.M., Mussatto S.I., Pastrana L., Aguilar C.N., Teixeira J.A., Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed, Carbohydr. Pol., 2011, 86, 1137–1144.[Crossref]
- [42] Sousa A.M.M., Alves V.D., Morais S., Delerue-Matos C., Gonçalves M.P., Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: Evaluation of a microwave-assisted process using response surface methodology, Bioresource Technol., 2010, 101, 3258–3267. [Crossref][WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0132