Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Production of phosphate biofertilizers from bones by phosphate-solubilizing bacteriaBacillus megaterium

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the production of phosphate biofertilizers from bones by phosphate-solubilizing bacteria Bacillus megaterium is presented. The biofertilizers used in this study contain phosphorus compounds that are in available form to plants as well as components of growth medium. The solubilization was performed under two conditions; with chlorides and with sulphates instead of chlorides. Three biofertilizer forms are proposed in relation to the doses of bones applied in the solubilization process (4, 10 or 20 g L-1). The solubilization degree varied according to the bacterial medium formulation and the bones doses. The replacement of chlorides with sulphates yielded a lower growth rate, and resulted, in a lower solubilization. The specific growth rate of the cells of B. megaterium in a sulphate medium was lower than compared with the specific growth rate of cell culture in a medium of chlorides of about 22.4, 39 and 14%, for 4, 10 and 20 g L-1 of bones concentration, respectively. In the stationary phase, the solubilization factor (SF) was higher (61.7%) for the solubilization process conducted in a medium with chlorides − Cbone 4 g L-1, compared with the solubilization process conducted in the medium of sulphates (52.7%).
EN
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-01-31
zaakceptowano
2015-06-12
online
2015-08-04
Twórcy
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Technology, Gdańska 7/9,
    50-344 Wrocław, Poland
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Technology, Gdańska 7/9,
    50-344 Wrocław, Poland
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Technology, Gdańska 7/9,
    50-344 Wrocław, Poland
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Technology, Gdańska 7/9,
    50-344 Wrocław, Poland
Bibliografia
  • [1] Tóth G., Guicharnaud R.A., Tóth B., Hermann T., Phosphorus levels in croplands of the European Union with implications for P fertilizer use, Eur. J. Agron., 2014, 55, 42–52[WoS][Crossref]
  • [2] Vassilev N., Medina A., Mendes G., Galvez A., Martos V., Vassileva M., Solubilization of animal bonechar by a filamentous fungus employed in solid state fermentation, Ecol. Eng., 2013, 58, 165–169[WoS]
  • [3] Xiao C.-Q., Chi R.-A., Huang X.-H., Zhang W.-X.,Qiu G.-Z., WangD.-Z., Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines, Ecol.Eng., 2008, 33, 187–193[WoS]
  • [4] Labuda M., Saeid A., Chojnacka K., Górecki H., Zastosowanie Bacillus megaterium w solubilizacji fosforu, Przem.Chem.,2012, 91, 837−840
  • [5] Rodríguez H, Fraga R., Phosphate solubilizing bacteria and their role in plant growth promotion,Biotechnol. Adv., 1999, 17, 319−39[Crossref]
  • [6] Alfa M.I., Adie D.B., Igboro S.B., Oranusi U.S., Dahunsi S.O., Akali D.M., Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings, Renew. Energ., 2014, 63, 681–686[WoS]
  • [7] Valdés J., Pedroso I., Quatrini R., Dodson R.J., Tettelin H., Blake R., et al., Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications, BMC Genomics, 2008, 9, 597[WoS][Crossref]
  • [8] Korneli C., David F., Biedendieck R., Jahn D., Wittmann Ch., Getting the big beast to work-Systems biotechnology of Bacillus megaterium for novel high-value proteins, J. Biotechnol., 2013, 163, 2, 87−96[WoS]
  • [9] Mishra R.R., Prajapati S., Das J., Dangar T.K., Das N., Thatoi H., Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product, Chemosphere, 2011, 84, 1231−1237[WoS]
  • [10] Hu X., Roberts D.P, Xie L., Maul J.E., Yu Ch., Li Y. et. al.,Bacillus megateriumA6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth, Crop Prot., 2013, 52, 151−158[Crossref]
  • [11] Rajkumar M., Ma Y., Freitas H., Improvement of Ni phytostabilization by inoculation of Ni resistantBacillus megateriumSR28C,J. Environ. Manage., 2013, 128, 973−98
  • [12] Kildea S., Ransbotyn V., Khan M.R., Fagan B., Leonard G., Mullins E., et al., Bacillus megateriumshows potential for the biocontrol of septoriatritici blotch of wheat, Biol. Control, 2008, 47, 37−45[Crossref]
  • [13] Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies (OJ L 147, 31.5.2001, p. 1)
  • [14] Saeid A., Labuda M., Chojnacka K., Górecki H., Valorization of Bones to Liquid Phosphorus Fertilizer by Microbial Solubilization, Waste Biomass Valor., 2014, 5, 265–272
  • [15] Saeid A., Labuda M., Jastrzębska M., Chojnacka K., Górecki H., The concept of production of new generation of phosphorus biofertilizer - BioFertP project, Przem. Chem. (in press, in polish)
  • [16] Maas E.V., Physiological responses to chloride. In Jackson T.L. (ed.) Special Bulletin on Chloride and Crop Production, Potash & Phosphate Institute, Atlanta, GA, 1986
  • [17] Gunduz S., Akman S., Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry, Food Chem., 2015, 172, 213–218.[WoS]
  • [18] Zhao Q., Wu1 Y., Gao L., Ma J., LiCh-Y.Xian Ch.-B., Sulfur nutrient availability regulates root elongation by affecting root indole‐3‐acetic acid levels and the stem cell niche, J. Integr. Plant Biol.,2014, 56, 1151–1163.[WoS]
  • [19] Blum S.Ch., Lehmann J., Solomon D., Caires E.F, Alleoni L.R.F., Sulfur forms in organic substrates affecting S mineralization in soil, Geoderma, 2013, 200–201, 156–164[WoS]
  • [20] Miransari M., Soil microbes and the availability of soil nutrients, Acta Physiol. Plant, 2013, 35, 3075–3084[WoS]
  • [21] López A. C., Alippi A. M., Diversity of Bacillus megaterium isolates cultured from honeys, LWT - Food Sci. Technol., 2009, 42, 212−219[WoS]
  • [22] Kulpreecha S., Boonruangthavorn A., Meksiriporn B., Thongchul N., Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium, J. Biosci. Bioeng., 2009, 107, 240−245[WoS]
  • [23] Illanes A., Acevedo F., Gentina J.C., Reyes I., Torres R., Cartagena O., et al., Production of penicillin acylase from Bacillus megaterium in complex and defined media, Process Biochem., 1994, 29, 263−270[Crossref]
  • [24] Kafkafi U., Xu G., Chlorine. In Lal, R. (ed.)Encyclopedia of Soil Science pp. 222-226, Taylor & Francis Group, LLC, 2006
  • [25] Heckman J.R., Chlorine. In BarkerA.V., PilbeamD.J. (eds.) Handbook of Plant Nutrition pp. 281-291, Taylor & Francis Group, LLC,2006
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0123
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.