Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Fabrication and characterization of nanostructured thermoelectric FexCo1-xSb3

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel synthesis route for the fabrication of p-type nanostructured skutterudite, FexCo1-xSb3 in large quantity is reported. This scalable synthesis route provides nano-engineered material with less impact on the environment compared to conventional synthesis procedures. Several Fe substituted compositions have been synthesized to confirm the feasibility of the process. The process consists of a nano-sized precursor fabrication of iron and cobalt oxalate, and antimony oxides by chemical co-precipitation. Further thermochemical processes result in the formation of iron substituted skutterudites. The nanopowders are compacted by Spark Plasma Sintering (SPS) technique in order to maintain nanostructure. Detailed physicochemical as well as thermoelectric transport properties are evaluated. Results reveal strongly reduced thermal conductivity values compared to conventionally prepared counterparts, due to nanostructuring. P-type characteristic was observed from the Seebeck measurements while electrical conductivity is high and shows metallic behavior. The highest TE figure of merit of 0.25 at 800 K has been achieved, which is strongly enhanced with respect to the mother compound CoSb3. This suggests the promise of the utilized method of fabrication and processing for TE applications with improved performance.
EN
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2014-04-07
zaakceptowano
2014-08-13
online
2014-12-30
Twórcy
  • Department of Materials and Nano Physics, KTH Royal Institute of
    Technology, Isafjordsgatan 22, SE16440, Kista-Stockholm, Sweden
  • Department of Materials and Nano Physics, KTH Royal Institute of
    Technology, Isafjordsgatan 22, SE16440, Kista-Stockholm, Sweden
  • Department of Materials and Nano Physics, KTH Royal Institute of
    Technology, Isafjordsgatan 22, SE16440, Kista-Stockholm, Sweden
  • Department of Materials and Environmental
    Chemistry, Stockholm University, Arrhenius Laboratory, 106 91
    Stockholm, Sweden
  • Fraunhofer-Institut für
    Physikalische Messtechnik IPM, 79110 Freiburg, Germany
  • Fraunhofer-Institut für
    Physikalische Messtechnik IPM, 79110 Freiburg, Germany
  • Department of Materials and Nano Physics, KTH Royal Institute of
    Technology, Isafjordsgatan 22, SE16440, Kista-Stockholm, Sweden
Bibliografia
  • [1] Rowe D. M., ed. Thermoelectrics handbook: macro to nano. CRCpress, 2005.
  • [2] Harnwunggmoung, A., Kurosaki, K., Plirdpring, T., Sugahara, T.,Ohishi, Y., Muta, H., & Yamanaka, S. Thermoelectric propertiesof Ga-added CoSb3 based skutterudites. J. Appl. Phys. 110, no. 1(2011): 013521. DOI: 10.1063/1.3606417[Crossref]
  • [3] He, T., Calvarese T. G., Chen J-Z., Rosenfeld H. D., Small R. J.,Krajewski J. J, et al. Origin of low thermal conductivity in α-Mn:enhancing the ZT of YbAl 3 and CoSb 3 through Mn addition.Thermoelectrics, 2005. ICT 2005. 24th International Conferenceon. IEEE, 2005. DOI: 10.1109/ICT.2005.1519980[Crossref]
  • [4] Muhammed M., and. Toprak M: Nanostructured Skutteruditesin: Rowe, David Michael, ed. Thermoelectrics handbook: macroto nano. CRC press, 2005.
  • [5] Toprak, M. S., Stiewe, C., Platzek, D., Williams, S., Bertini, L.,Müller, E, et al. The impact of nanostructuring on the thermalconductivity of thermoelectric CoSb3. Advanced Functional Materials14, no. 12 (2004): 1189-1196. DOI: 10.1002/adfm.200400109[Crossref]
  • [6] Toprak, M., Zhang Y., Muhammed M., Zakhidov A. A.,Baughman R. H., and I. Khayrullin. Chemical route to nanoengineeredskutterudites. In Thermoelectrics, 1999. EighteenthInternational Conference on, pp. 382-385. IEEE, 1999. DOI:10.1109/ICT.1999.843410[Crossref]
  • [7] Tritt, Terry M. Holey and unholey semiconductors. Science 283,no. 5403 (1999): 804-805. DOI: 10.1126/science.283.5403.804[Crossref]
  • [8] Zhou, C., Sakamoto, J., & Morelli, D. Low-TemperatureThermoelectric Properties of Co0. 9Fe0. 1Sb3-Based SkutteruditeNanocomposites with FeSb2 Nanoinclusions J. Electron. Mater.40, no. 5 (2011): 547-550. DOI: 10.1007/s11664-010- 1444-5[Crossref]
  • [9] Zhou, C., Sakamoto, J., Morelli, D., Zhou, X., Wang, G., & Uher, C.Thermoelectric properties of Co0.9Fe0. 1Sb3-based skutteruditenanocomposites with FeSb2 nanoinclusions J. Appl. Phys. 109,no. 6 (2011): 063722. DOI: 10.1063/1.3554403[Crossref]
  • [10] Yang, L., Hng, H. H., Li, D., Yan, Q. Y., Ma, J., Zhu, T. J., et al.Thermoelectric properties of p-type CoSb 3 nanocompositeswith dispersed CoSb3 nanoparticles. J. Appl. Phys. 106, no. 1(2009): 013705-013705. DOI: 10.1063/1.3157202[Crossref]
  • [11] Zhou, C., Morelli, D., Zhou, X., Wang, G., & Uher, C..Thermoelectric properties of P-type Yb-filled skutterudite Yb x Fe y Co 4-y Sb12. Intermetallics 19, no. 10 (2011): 1390-1393. DOI: 10.1016/j.intermet.2011.04.015[Crossref]
  • [12] Deng, L., Ma, H. A., Su, T. C., Yu, F. R., Tian, Y. J., Jiang, Y. P.,et al. Enhanced thermoelectric properties in Co4Sb12− xTexalloys prepared by HPHT. Materials Letters 63, no. 24 (2009):2139-2141. DOI: 10.1016/j.matlet.2009.06.008[Crossref][WoS]
  • [13] Katsuyama, S., Takagi, Y., Ito, M., Majima, K., Nagai, H.,Sakai, H., et al. Thermoelectric properties of (Zn1− yMgy)1−xAlxO ceramics prepared by the polymerized complex method. J.Appl. Phys.92, no. 3 (2002): 1391-1398. DOI: 10.1063/1.1489091[Crossref]
  • [14] Park, K. H., You, S. W., Ur, S. C., & Kim, I. H. Electronic TransportProperties of Fe-doped CoSb3 Prepared by EncapsulatedInduction Melting. Thermoelectrics, 2006. ICT‘06. 25thInternational Conference on, pp. 435-438. IEEE, 2006. DOI:10.1109/ICT.2006.331308[Crossref]
  • [15] Yang, J., Meisner, G. P., Morelli, D. T., & Uher, C. Iron valencein skutterudites: Transport and magnetic properties of Co1-xFexSb3. Physical Review B 63, no. 1 (2000): 014410. DOI:10.1103/PhysRevB.63.014410[Crossref]
  • [16] Park, K. H., Jung, J. Y., Ur, S. C., & Kim, I. H. ThermoelectricProperties of Fe-Doped CoSb3 Prepared by EncapsulatedInduction Melting and Hot Pressing. In Materials science forum,vol. 534, pp. 1557-1560. 2007. DOI: 10.4028/www.scientific.net/MSF.534-536.1557[Crossref]
  • [17] Biswas, K., Muir, S., & Subramanian, M. A. Rapid microwavesynthesis of indium filled skutterudites: An energy efficientroute to high performance thermoelectric materials. MaterialsResearch Bulletin 46, no. 12 (2011): 2288-2290. DOI: 10.1016/j.materresbull.2011.08.058[WoS][Crossref]
  • [18] Ioannidou, A. A., Rull, M., Martin-Gonzalez, M., Moure, A.,Jacquot, A., & Niarchos, D. Microwave Synthesis andCharacterization of the Series Co1− xFexSb3 High TemperatureThermoelectric Materials. J. Electron. Mater 43, no. 7 (2014):2637-2643. DOI: 10.1007/s11664-014-3197-z[Crossref]
  • [19] Li, S., Zhang, S., He, Z., Toprak, M., Stiewe, C., Muhammed,M., & Müller, E. Novel Solution Route Synthesis of Low ThermalConductivity Nanocrystalline Bismuth Telluride. J. Nanosci.Nanotechnol. 10, no. 11 (2010): 7658-7662. DOI: 10.1166/jnn.2010.2775[Crossref]
  • [20] Saleemi, M., Toprak, M. S., Li, S., Johnsson, M., & Muhammed,M. Synthesis, processing, and thermoelectric properties of bulknanostructured bismuth telluride (Bi2Te3). J Mater. Chem. 22,no. 2 (2012): 725-730. DOI: 10.1039/C1JM13880D[WoS][Crossref]
  • [21] Yakhshi Tafti, M., Saleemi, M., Jacquot, A., Jagle, M.,Muhammed, M., & Toprak, M. S. Fabrication and characterizationof nanostructured bulk skutterudites. In 2013 MRS SpringMeeting-Symposium H/I/V–Nanoscale ThermoelectricMaterials, Thermal and Electrical Transport, and Applicationsto Solid-State Cooling and Power Generation, pp. 105-110. 2013.DOI: 10.1557/opl.2013.947[Crossref]
  • [22] Puigdomenech, I. (2013, 04 26). Chemical EquilibriumDiagrams. Retrieved 06 15, 2013, from KTH: http://www.kth.se/che/medusa
  • [23] Jacquot A., Jaegle M., Pernau H.-F., König J., Tarantik K.,Bartholomé K., et al. Simultaneous measurement of thethermoelectric properties with the new IPM-ZTMeter, 9thEuropean Conference on Thermoelectrics, Thessaloniki,September 28-30, C-14-P (2011).
  • [24] Saleemi, M., Tafti, M. Y., Toprak, M. S., Stingaciu, M., Johnsson,M., Jägle, M., et al. Fabrication of nanostructured bulk CobaltAntimonide (CoSb3) based skutterudites via bottom-upsynthesis. In MRS Proceedings, vol. 1490, pp. 121-126.Cambridge University Press, 2013. DOI: 10.1557/opl.2012.1643[Crossref]
  • [25] Jacquot, A., Rull, M., Moure, A., Fernandez-Lozano, J. F.,Martin-Gonzalez, M., Saleemi, M., et al. Anisotropy andinhomogeneity measurement of the transport propertiesof spark plasma sintered thermoelectric materials. In MRSProceedings, vol. 1490, pp. 89-95. Cambridge University Press,2013. DOI: 10.1557/opl.2012.1670[Crossref]
  • [26] Saleemi, M., Famengo, A., Fiameni, S., Boldrini, S., Battiston, S.,Johnsson, M.et al. Thermoelectric performance of highermanganese silicide nanocomposites. J. Alloy. Comp. 619 (2015):31-37. DOI: 10.1016/j.jallcom.2014.05.119[Crossref]
  • [27] Wang, K., Hu, R., Warren, J., & Petrovic, C. „Enhancement of thethermoelectric properties in doped FeSb2 bulk crystals.“ J. App.Phys. 112, no. 1 (2012): 013703. DOI:10.1063/1.4731251[Crossref]
  • [28] Price, P. J. CXXXV. Ambipolar thermodiffusion of electrons andholes in semiconductors. Philosophical Magazine 46, no. 382(1955): 1252-1260. DOI:10.1080/14786441108520635[Crossref]
  • [29] Shi, X., Yang, J., Salvador, J. R., Chi, M., Cho, J. Y., Wang, H.,et al. Multiple-filled skutterudites: high thermoelectric figureof merit through separately optimizing electrical and thermaltransports. J. Am. Chem. Soc. 133, no. 20 (2011): 7837-7846.DOI: 10.1021/ja111199y [WoS][Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0074
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.