Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Diffuse Coplanar Surface Barrier Discharge in Artificial Air: Statistical Behaviour of Microdischarges

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diffuse Coplanar Surface Barrier Discharge (DCSBD) is a novel type of atmospheric-pressure plasma source developed for high-speed large-area surface plasma treatments. The statistical behavior of microdischarges of DCSBD generated in artificial air atmosphere was studied using time-correlated optical and electrical measurements. Changes in behavior of microdischarges are shown for various electrode gap widths and input voltage amplitudes. They are discussed in the light of correlation of the number of microdischarges and the number of unique microdischarges’ paths per discharge event. The ‘memory effect’ was observed in the behavior of microdischarges and it manifests itself in a significant number of microdischarges reusing the path of microdischarges from previous half-period. Surprisingly this phenomenon was observed even for microdischarges of the same half-period of the discharge, where mechanisms other than charge deposition have to be involved. The phenomenon of discharge paths reuse is most pronounced for wide electrode
EN
Wydawca

Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2014-01-22
zaakceptowano
2014-05-08
online
2014-12-01
Twórcy
autor
  • Masaryk University, R&D center for low-cost plasma and nanotechnology surface modifications, Kotlarska 2, 611 37 Brno, Czech Republic
  • Masaryk University, R&D center for low-cost plasma and nanotechnology surface modifications, Kotlarska 2, 611 37 Brno, Czech Republic
  • Masaryk University, R&D center for low-cost plasma and nanotechnology surface modifications, Kotlarska 2, 611 37 Brno, Czech Republic
  • Masaryk University, R&D center for low-cost plasma and nanotechnology surface modifications, Kotlarska 2, 611 37 Brno, Czech Republic
Bibliografia
  • [1] Kogelschatz U., Dielectric-barrier Discharges: Their History, Discharge Physics and Industrial Applications, Plasma Chem. Plasma Process., 2003, 23, 1–46[Crossref]
  • [2] Roth J. R., Industrial Plasma Engineering, Taylor & Francis, Bristol and Philadelphia, 2001
  • [3] Pappas D., Status and potential of atmospheric plasma processing of materials, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 2011, 29, 020801[Crossref]
  • [4] Temmerman E., Akishev Y., Trushkin N., Leys C., Verschuren J., Surface modification with a remote atmospheric pressure plasma: dc glow discharge and surface streamer regime, J. Phys. D. Appl. Phys., 2005, 38, 505–509[Crossref]
  • [5] Council regulation (EC) 1907/2006 of 18 december 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, OJ L 136/3, 2007
  • [6] Chirokov A., Gutsol A., Fridman A., Sieber K. D., Grace J. M., Robinson K. S., Analysis of two-dimensional microdischarge distribution in dielectric-barrier discharges, Plasma Sources Sci. Technol., 2004, 13, 623–635
  • [7] Wagner H.-E., Brandenburg R., Kozlov K. V., Sonnenfeld A., Michel P., Behnke J. F., The barrier discharge: basic properties and applications to surface treatment, Vacuum, 2003, 71, 417–436
  • [8] Rohani V., Bauville G., Lacour B., Puech V., Duminica F. D., Silberberg E., Study of the treatment’s homogeneity in plasma assisted chemical vapour deposition by atmospheric pressure dielectric barrier discharge, Surf. Coatings Technol., 2008, 203, 862–867[Crossref]
  • [9] Kanazawa S., Kogoma M., Moriwaki T., Okazaki S., Stable glow plasma at atmospheric pressure, J. Phys. D. Appl. Phys., 1988, 21, 838–840[Crossref]
  • [10] Kong M. G., Electrically efficient production of a diffuse nonthermal atmospheric plasma, IEEE Trans. Plasma Sci., 2003, 31, 7–18[Crossref]
  • [11] Meiners A., Leck M., Abel B., Efficiency enhancement of a dielectric barrier plasma discharge by dielectric barrier optimization, Rev. Sci. Instrum., 2010, 81, 113507[Crossref]
  • [12] Foest R., Kindel E., Ohl A., Stieber M., Weltmann K.-D., Non-thermal atmospheric pressure discharges for surface modification, Plasma Phys. Control. Fusion, 2005, 47, B525–B536[Crossref]
  • [13] Samukawa S., Hori M., Rauf S., Tachibana K., Bruggeman P., Kroesen G., et al., The 2012 Plasma Roadmap, J. Phys. D. Appl. Phys., 2012, 45, 253001[Crossref]
  • [14] Goossens O., Dekempeneer E., Vangeneugden D., Van de Leest R., Leys C., Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation, Surf. Coatings Technol., 2001, 142–144, 474–481
  • [15] Bogaerts A., Neyts E., Gijbels R., van der Mullen J., Gas discharge plasmas and their applications, Spectrochim. Acta Part B At. Spectrosc., 2002, 57, 609–658[Crossref]
  • [16] Borcia G., Anderson C. A., Brown N. M. D., Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form, Plasma Sources Sci. Technol., 2003, 12, 335–344
  • [17] Pietsch G. J., Gibalov V. I., Dielectric barrier discharges and ozone synthesis, Pure Appl. Chem., 1998, 70, 1169–1174[Crossref]
  • [18] Kogelschatz U., Eliasson B., Egli W., Dielectric-Barrier Discharges. Principle and Applications, Le J. Phys. IV, 1997, 07, C4-47–C4-66
  • [19] Šimor M., Ráhel’ J., Vojtek P., Černák M., Brablec A., Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, Appl. Phys. Lett., 2002, 81, 2716[Crossref]
  • [20] Černák M., Ráhel’ J., Kováčik D., Šimor M., Brablec A., Slavíček P., Generation of Thin Surface Plasma Layers for Atmospheric-Pressure Surface Treatments, Contrib. to Plasma Phys., 2004, 44, 492–495[Crossref]
  • [21] Černák M., Kováčik D., Ráhel’ J., St’ahel P., Zahoranová A., Kubincová J., et al., Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing, Plasma Phys. Control. Fusion, 2011, 53, 12, 124031[Crossref]
  • [22] Eliasson B., Hirth M., Kogelschatz U., Ozone synthesis from oxygen in dielectric barrier discharges, J. Phys. D. Appl. Phys., 1987, 20, 1421–1437[Crossref]
  • [23] Gibalov V. I., Pietsch G. J., The development of dielectric barrier discharges in gas gaps and on surfaces, J. Phys. D. Appl. Phys., 2000, 33, 2618–2636[Crossref]
  • [24] Kogelschatz U., Collective phenomena in volume and surface barrier discharges, J. Phys. Conf. Ser., 2010, 257, 012015[Crossref]
  • [25] Bruggeman P., Brandenburg R., Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics, J. Phys. D. Appl. Phys., 2013, 46, 464001[Crossref]
  • [26] Hoder T., Šíra M., Kozlov K. V., Wagner H.-E., Investigation of the coplanar barrier discharge in synthetic air at atmospheric pressure by cross-correlation spectroscopy, J. Phys. D. Appl. Phys., 2008, 41, 035212[Crossref]
  • [27] Hoder T., Šíra M., Kozlov K. V., Wagner H.-E., 3D Imaging of the Single Microdischarge Development in Coplanar Barrier Discharges in Synthetic Air at Atmospheric Pressure, Contrib. to Plasma Phys., 2009, 49, 381–387[Crossref]
  • [28] Cech J., Hanusova J., Stahel P., Slavicek P., Diffuse Coplanar Surface Barrier Discharge In Nitrogen: Microdischarges Statistical Behavior, Acta Polytech., 2013, 53, 127–130
  • [29] Čech J., Sťahel P., Navrátil Z., The influence of electrode gap width on plasma properties of diffuse coplanar surface barrier discharge in nitrogen, Eur. Phys. J. D, 2009, 54, 259–264[Crossref]
  • [30] Čech J., St’ahel P., Navrátil Z., Černák M., Space and Time Resolved Optical Emission Spectroscopy of Diffuse Surface Coplanar Barrier Discharge in Nitrogen, Chem. List., 2008, 102, 1348–1351
  • [31] Skácelová D., Danilov V., Schäfer J., Quade A., Sťahel P.,Černák M., et al., Room temperature plasma oxidation in DCSBD: A new method for preparation of silicon dioxide films at atmospheric pressure, Mater. Sci. Eng. B, 2013, 178, 651–655.[Crossref]
  • [32] Prysiazhnyi V., Vasina P., Panyala N. R., Havel J., Cernak M., Air DCSBD plasma treatment of Al surface at atmospheric pressure, Surf. Coatings Technol., 2012, 206, 3011–3016[Crossref]
  • [33] Homola T., Matoušek J., Medvecká V., Zahoranová A.,Kormunda M., Kováčik D., et al., Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning, Appl. Surf. Sci., 2012, 258, 7135–7139[Crossref]
  • [34] Homola T., Matoušek J., Hergelová B., Kormunda M., Wu L. Y. L., Černák M., Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma, Polym. Degrad. Stab., 2012, 97, 2249–2254[Crossref]
  • [35] Černáková L., Szabová R., Wolfová M., Buček A., Černák M., Surface modification of polypropylene nonwoven after plasma activation at atmospheric pressure, Fibres Text. East. Eur., 2007, 15, 121–123
  • [36] Massines F., Gherardi N., Naudé N., Ségur P., Recent advances in the understanding of homogeneous dielectric barrier discharges, Eur. Phys. J. Appl. Phys., 2009, 47, 22805[Crossref]
  • [37] Fanelli F., d’Agostino R., Fracassi F., Effect of Gas Impurities on the Operation of Dielectric Barrier Discharges Fed with He, Ar, and Ar-C3F6, Plasma Process. Polym., 2011, 8, 557–567
  • [38] Brandenburg R., Navrátil Z., Jánský J., St’ahel P., Trunec D., Wagner H.-E., The transition between different modes of barrier discharges at atmospheric pressure, J. Phys. D. Appl. Phys., 2009, 42, 085208[Crossref]
  • [39] Fang Z., Qiu Y., Zhang C., Kuffel E., Factors influencing the existence of the homogeneous dielectric barrier discharge in air at atmospheric pressure, J. Phys. D. Appl. Phys., 2007, 40, 1401–1407[Crossref]
  • [40] Černák M., Černáková L., Hudec I., Kováčik D., Zahoranová A., Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J. Appl. Phys., 2009, 47, 22806[Crossref]
  • [41] Štefečka M., Kando M., Černák M., Korzec D., Finantu-Dinu E. G., Dinu G. L., et al., Spatial distribution of surface treatment efficiency in coplanar barrier discharge operated with oxygen–nitrogen gas mixtures, Surf. Coatings Technol., 2003, 174–175, 553–558
  • [42] Akishev Y., Aponin G., Balakirev A., Grushin M., Karalnik V., Petryakov A., et al., ‘Memory’ and sustention of microdischarges in a steady-state DBD: volume plasma or surface charge?, Plasma Sources Sci. Technol., 2011, 20, 024005
  • [43] Bogaczyk M., Nemschokmichal S., Wild R., Stollenwerk L., Brandenburg R., Meichsner J., et al., Development of Barrier Discharges: Operation Modes and Structure Formation, Contrib. to Plasma Phys., 2012, 52, 847–855[Crossref]
  • [44] Chirokov A., Gutsol A., Fridman A., Atmospheric pressure plasma of dielectric barrier discharges, Pure Appl. Chem., 2005, 77, 487–495[Crossref]
  • [45] Akishev Y., Aponin G., Balakirev A., Grushin M., Karalnik V., Petryakov A., et al., Spatial-temporal behavior of individual microdischarges in dielectric barrier discharge, Acta Tech. ČSAV (Československá Akad. Věd), 2011, 56, T3–T14
  • [46] Marković V. L., Petrović Z. L., Pejović M. M., Surface recombination of atoms in a nitrogen afterglow, J. Chem. Phys., 1994, 100, 8514-8521
  • [47] Kettlitz M., Höft H., Hoder T., Reuter S., Weltmann K.-D., Brandenburg R., On the spatio-temporal development of pulsed barrier discharges: influence of duty cycle variation, J. Phys. D. Appl. Phys., 2012, 45, 245201[Crossref]
  • [48] Šimek M., Ambrico P. F., De Benedictis S., Dilecce G., Prukner V., Schmidt J., N2(A3 Σ+u) behaviour in a N2 –NO surface dielectric barrier discharge in the modulated ac regime at atmospheric pressure, J. Phys. D. Appl. Phys., 2010, 43, 124003[Crossref]
  • [49] Bogaczyk M., Nemschokmichal S., Wild R., Stollenwerk L., Brandenburg R., Meichsner J., et al., Development of Barrier Discharges: Operation Modes and Structure Formation, Contrib. to Plasma Phys., 2012, 52, 847–855[Crossref]
  • [50] Manley T. C., Electric characteristics of the ozonator discharge, Trans. Electrochem. Soc., 1943, 84, 83-96[Crossref]
  • [51] Ráhel’ J., Szalay Z., Morávek T., DBD breakdown voltage at elevated temperatures, Book of abstracts, 5th Central European Symposium on Plasma Chemistry (25-29 August 2013, Balatonalmádi, Hungary), RCNS HAS Budapest, Hungary, 2013, 115–116
  • [52] Allegraud K., Guaitella O., Rousseau A., Spatio-temporal breakdown in surface DBDs: evidence of collective effect,J. Phys. D. Appl. Phys., 2007, 40, 7698–7706[Crossref]
  • [53] Dong L., Yin Z., Li X., Chai Z., Wang L., Spatiotemporal dynamics of discharge filaments in dielectric barrier discharges,J. Electrostat., 2003, 57, 243–250[Crossref]
  • [54] Kashiwagi Y., Itoh H., Synchronization of positive surface streamers triggered by vacuum ultraviolet in atmosphere,J. Phys. D. Appl. Phys., 2006, 39, 113–118[Crossref]
  • [55] Hoder, T., Studium filamentu koplanárního bariérového výboje, PhD thesis, Masaryk University, Brno, Czech Republic, 2009,(in Czech)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.