Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 1 | 1 |
Tytuł artykułu

Preparation and Characterization of Low Temperature Heat-Treated 45S5 Bioactive Glass-Ceramic Analogues

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 45S5 Bioglassr and its sintered bioactive glass-ceramic (BGC) have been widely investigated as bone implants, mainly for its ability to bond to hard tissues. However, high temperature treatment is not enough to improve its poor mechanical properties, but compromise its biologically relevant performances. The innovative BGC compositions based on the thermally treated 45S5 Bioglassr were developed by decreasing the P2O5 quantity and adding B2O3 (0-6%) into the Na2O–2CaO–3SiO2- based bioactive glasses (BG). The thermally treated BGCs were fully characterized from the microstructural and mechanical points of view and compared to each other. Their bioactivity and bio-dissolutionwere established by means of in vitro soaking tests. The new B2O3-added 45S5 BG analogues, named NCS-xB, can be transformed to crystalline phase (Na2Ca2Si3O9)-based BGCs of high compactness and bioactivity at a relatively low temperature heat treatment (≤ 900ºC), since their bioactivity is preserved. Our experimental results suggest that the new 45S5 BGC analogues with optimized composition exhibit improved micro- structural and mechanical properties, and are beneficial for making specific products such as porous scaffolds or composites for bone defect repair.
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2014-12-28
zaakceptowano
2015-06-09
online
2015-09-07
Twórcy
autor
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
autor
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
autor
  • Zhejiang-California International Nanosystems Institute Zhejiang University, Hangzhou 310029, China
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
autor
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
autor
  • Institute of Advanced Manufacturing
    Engineering, Department of Mechanical Engineering,
    Zhejiang University, Hangzhou 310027, China
autor
  • Institute of Advanced Manufacturing
    Engineering, Department of Mechanical Engineering,
    Zhejiang University, Hangzhou 310027, China
autor
  • Institute of Advanced Manufacturing
    Engineering, Department of Mechanical Engineering,
    Zhejiang University, Hangzhou 310027, China
autor
  • Zhejiang-California International Nanosystems Institute Zhejiang University, Hangzhou 310029, China
Bibliografia
  • ---
  • [1] Hench L.L., West J.K., Biological applications of bioactiveglasses, Life Chem Report. 1996, 13, 187–241.
  • [2] Thomas M.V., Puleo D.A., Al-Sabbagh M., Bioactive glass threedecades on, J. Long-term Effects Med Implants. 2005, 15, 585–597.
  • [3] Huang K., Cai S., Xu G., Ye X., Dou Y., Ren M., Wang X., Preparationand characterization of mesoporous 45S5 bioactive glass–ceramic coatings on magnesium alloy for corrosion protection,J. Alloy Compd. 2013, 580, 290–297.
  • [4] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biologicalresponse to ionic dissolution products from bioactive glassesand glass-ceramics, Biomaterials. 2011, 32, 2757–2774.[Crossref][WoS]
  • [5] Hench L.L., Polak J.M., Third generation biomedical materials,Science. 2002, 295, 1014–1017.
  • [6] Chen Q.Z., Thompson I.D., Boccaccini A.R., 45S5 Bioglassr -derived glass–ceramic scaffolds for bone tissue engineering,Biomaterials. 2006, 27, 2414–2425.[Crossref]
  • [7] Rahaman M.N., Day D.E., Bal B.S., Fu Q., Jung S.B., BonewaldL.F., Tomsia A.P., Bioactive glass in tissue engineering, Acta Biomater.2011, 2355–2373.[WoS][Crossref]
  • [8] Hamadouche M., Meunier A., Greenspan D.C., Blanchat C.,Zhong J.P., Torre G.P.L., Sedel L., Long-term in vivo bioactivityand degradability of bulk sol-gel bioactive glasses, J. Biomed.Mater. Res. 2001, 54, 560–6.[Crossref]
  • [9] Gough J.E., Clupper D.C., Hench L.L., Osteoblast responses totape-cast and sintered bioactive glass ceramics, J. Biomed.Mater. Res. 2004, 69A, 621–28.[Crossref]
  • [10] Midha S., Kim T.B., van den Bergh W., Lee P.D., Jones J.R.,Mitchell C.A., Preconditioned 70S30C bioactive glass foamspromote osteogenesis in vivo, Acta Biomater. 2013,9, 9169–9182.[WoS][Crossref]
  • [11] El-Ghannam A., Ducheyne P., Shapiro I., Formation of surfacereaction products on bioactive glass and their effects on the expressionof the osteoblastic phenotype and the deposition ofmineralized extracellular matrix, Biomaterials. 1997, 18, 295–303.[Crossref]
  • [12] Clupper D.C., Hench L.L., Mecholsky J.J., Strength and toughnessof tape cast bioactive glass 45S5 following heat treatment,J. Eur. Ceram. Soc. 2004, 24, 2929-2934.[Crossref]
  • [13] Oonishi H., Hench L.L.,Wilson J., Sugihara F., Tsuji E.,MatsuuraM., Kin S., et al., Quantitative comparison of bone growth behaviorin granules of Bioglassr A-W glass-ceramic and hydroxyapatite,J. Biomed. Mater. Res. 2000, 51, 37–46.[Crossref]
  • [14] Bellucci D., Sola A., Cannillo V., Low temperature sintering ofinnovative bioactive glasses, J. Am. Ceram. Soc. 2012, 95, 1313–1319.[Crossref]
  • [15] Arstila H., Hupa L., Karlsson Hupa M., Influence of heat treatmenton crystallization of bioactive glasses, J. Non-Cryst.Solids. 2008, 354, 722-728.[WoS]
  • [16] Boccaccini A.R., Chen Q., Lefebvre L., Gremillard L., ChevalierJ., Sintering, crystallisation and biodegradation behavior ofBioglassr-derived glass-ceramics, Faraday Discuss. 2007, 136,27–44.[WoS]
  • [17] Clupper D.C., Hench L.L., Crystallization kinetics of tape castbioactive glass 45S5, J. Non-Cryst. Solids. 2003, 318, 43–48.
  • [18] Lin C.C., Huang L.C., Shen P., Na2CaSi2O6–P2O5 based bioactiveglasses, Part 1: elasticity and structure, J. Non-Cryst. Solids.2005, 351, 3195–3203.
  • [19] Lefebvre L., Chevalier J., Gremillard L., Zenati R., Bernache-Assolant D., Sintering behaviour of 45S5 bioactive glass, ActaBiomater. 2008, 4, 1894–1903.[Crossref]
  • [20] Lefebvre L., Chevalier J., Gremillard L., Zenati R., Thollet G.,Bernache-Assolant D., Govin A., Structural transformations ofbioactive glass 45S5with thermal treatments, ActaMater. 2007,55, 3305–3313.
  • [21] Bellucci D., Cannillo V., Sola A., Chiellini F., Gazzarri M., MigoneC., Macroporous Bioglassr-derived scaffolds for bone tissueregeneration, Ceram. Int. 2011, 37, 1575-1585.[WoS]
  • [22] Bretcanu O., Chatzistavrou X., Paraskevopoulos K., Conradt R.,Thompson I., Boccaccini A.R., Sintering and crystallisation of45S5 Bioglassr powder, J. Eur. Ceram. Soc. 2009, 29, 3299–3306.[Crossref]
  • [23] Peitl O., Zanotto E.D., Hench L.L., Effect of crystallization on apatitelauer formation of bioactive glass 45S5, J. Biomed. Mater.Res. 1996, 30, 509–514.
  • [24] Rey C., Kim H.H., Gertenfeld L., Glimcher M.J. Characterizationof the apatite crystalinity of bone and their maturation inosteoblast cell culture: comparison with native bone crystals,Conn Tiss Res. 1996, 35, 343–349.
  • [25] Kokubo T., Kushitani H., Saka S., Kitsugi T., Yamamuro T., Solutionsable to reproduce in vivo surface-structure changes inbioactive glass-ceramics A-W, J. Biomed. Mater. Res. 1990, 24,721–734.[Crossref]
  • [26] Lu H.H., Pollack S.R., Ducheyne P., 45S5 Bioactive glass surfacecharge variations and the formation of a surface calcium phosphatelayer in solution containing fibronectin, J. Biomed.Mater.Res. 2001, 54, 454–461.[Crossref]
  • [27] Andersson O.H., Liu G., Karlsson K.H., Niemi L., Miettinen J.,Juhanoja J. In vivo behavior of glasses in the SiO2–CaO–Al2O3–Na2O–B2O3–P2O5 system, J. Mater. Sci. Mater. Med. 1990, 1,219–227.[Crossref]
  • [28] Li Y., Coughlan A., Laflr F.R., Pradhan D., Mellott N. P.,Wren A.W., Investigating the mechanical durability of bioactiveglasses as a function of structure, solubility and incubationtime, J. Non-Cryst. Solids. 2013, 380, 25–35.[WoS]
  • [29] Xu S., Yang X., Zhang L., Chen X., Shao H., He Y., et al., Effect ofborosilicate glass on the mechanical and biodegradation propertiesof 45S5-derived bioactive glass-ceramics, J. Non-Crystal.Solids. 2014, 405, 91-99.
  • [30] Yang X., Zhang L., Chen X., Sun X., Yang G., Guo X., et al., Influenceof B2O3 on the thermal and bioactive properties of CaOSiO2-P2O5 system, J. Non-Crystal. Solids. 2012, 358, 1171–1179.
  • [31] Bellucci D., Cannillo V., Sola A., Coeflcient of thermal expansionof bioactive glasses: available literature data and analyticalequation estimates, Ceram. Int. 2011, 37, 2963–2972.[WoS]
  • [32] Liu X., Huang W., Fu H., Yao A., Wang D., Pan H., Lu W., Jiang X.,Zhang X, Bioactive borosilicate glass scaffolds: In vitro degradationand bioactivity behaviors, J. Mater. Sci. Mater. Med.2009, 20, 1237–43.[WoS][Crossref]
  • [33] Jung S.B., Day D.E. Conversion kinetics of silicate, borosilicate,and borate bioactive glasses to hydroxyapatite, Phys. Chem.Glasses-B. 2009, 50, 85–88.
  • [34] Huang W., Day D.E., Kittiratanapiboon K., Rahaman M.N. Kineticsand mechanisms of the conversion of silicate (45S5), borate,and borosilicate glasses to hydroxyapatite in dilute phosphatesolutions, J. Mater. Sci. Mater. Med. 2006, 17, 583–96.[Crossref]
  • [35] Regi C.V., Vallet-Regi M., Rorenzo L.M. Preparation and in vitroof hydroapatite/sol-gel glass biphasic material, Biomaterials.2002, 23, 1865–1872.
  • [36] Pirayesh H., Nychka J.A., Sol-gel synthesis of bioactive glassceramic45S5 and its in vitro dissolution and mineralization behavior,J. Am. Ceram. Soc. 2013, 96, 1643–1650.[WoS][Crossref]
  • [37] Gao W., Hench L.L., Bioactive materials, Ceram. Int., 1996, 22,493–507.
  • [38] Fujibayashi S., Neo M., Kim H.-M., Kokubo T., Nakamura T., Acomparative study between in vivo bone ingrowth and in vitroapatite formation on Na2O–CaO–SiO2 glasses, Biomaterials.2003, 24, 1349–1356.[Crossref]
  • [39] Clupper D.C., Mecholsky Jr.J.J., LaTorre G.P., Greenspan D.C.,Sintering temperature effects on the in vitro bioactive responseof tape cast and sintered bioactive glass-ceramic in Tris buffer,J. Biomed. Mater. Res., 2001, 57, 532–540.[Crossref]
  • [40] Hench L.L., The Story of Bioglassr, J. Mater. Sci.: Mater Med.2006, 17, 967–78.[Crossref]
  • [41] Lin A.Y., Deliormanl M., Size-dependent degradation and bioactivityof borate bioactive glass, Ceram. Int. 2011, 39, 8087–8095.[WoS]
  • [42] Bi L., Jung S., Day D., Neidig K., Dusevich V., Eick D., BonewaldL., Evaluation of bone regeneration, angiogenesis, and hydroxyapatiteconversion in critical-sized rat calvarial defects implantedwith bioactive glass scaffolds, J. Biomed. Mater. Res.Part A. 2012, 100A, 3267–3275.[WoS][Crossref]
  • [43] Ramp W.K., Lens L.G., Kaysinger K.K., Medium pH modulatesmatrix, mineral, and energy metabolism in cultured chick bonesand osteoblast-like cells, Bone Miner. 1994, 24, 59–73.[Crossref]
  • [44] Zhang D., Leppäranta O., Munukka E., Ylänen H., Viljanen M.K.,Eerola E., et al., Antibacterial effects and dissolution behaviourof six bioactive glasses, J. Biomed.Mater. Res. Part A. 2010, 93,475–83.
  • [45] Martins C.H.G., Carvalho T.C., Souza M.G.M., Souza M.G., RavagnaniC., Peitl O., et al., Assessment of antimicrobial effect ofbiosilicate against anaeorbic, microaeroaerophilic and factutativeanaerobic microorganisms, J. Mater. Sci.: Mater Med. 2011,22, 1439-1446.[Crossref]
  • [46] Goh Y.F., Alshemary A.Z., Akram M., Kadir M.R.A., Hussain R., Invitrocharacterization of antibacterial bioactive glass containingceria, Ceram. Int. 2014, 40, 729–737.
  • [47] Brandao-Burch A., Utting J.C., Orriss I.R., Arnett T.R., Acidosisinhibits bone formation by osteoblasts in vitro by preventingmineralization, Calcif Tissue. Int. 2005, 77, 167–74.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_bglass-2015-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.