Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2023 | 1 | 1 | 1-11

Article title

Forecasting the equity premium: Do deep neural network models work?

Content

Title variants

Languages of publication

Abstracts

EN
This paper constructs deep neural network (DNN) models for equity-premium forecasting. We compare the forecasting performance of DNN models with that of ordinary least squares (OLS) and historical average (HA) models. The DNN models robustly work best and significantly outperform both OLS and HA models in both in- and out-of-sample tests and asset allocation exercises. Specifically, DNN models generate monthly out-of-sample R2 of 3.42% and an annual utility gain of 2.99% for a mean-variance investor from 2011:1 to 2016:12. Moreover, the forecasting performance of DNN models is enhanced by adding additional 14 variables selected from finance literature.

Journal

Year

Volume

1

Issue

1

Pages

1-11

Physical description

Dates

published
2023

Contributors

  • Guosen Securities
author
  • Tulane University
  • California State University
author
  • Zhejiang University of Finance and Economics

References

  • Baker, M., & Wurgler, J. (2006). Investor Sentiment and the Cross‐Section of Stock Returns. Journal of Finance, 61(4), 1645-1680. https://doi.org/10.1111/j.1540-6261.2006.00885.x
  • Bekiros, S., Gupta, R., & Majumdar, A. (2016). Incorporating economic policy uncertainty in US equity premium models: A nonlinear predictability analysis. Finance Research Letters, 18, 291-296. https://doi.org/10.1016/j.frl.2016.01.012
  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1-127. https://doi.org/10.1561/2200000006
  • Campbell, J. Y., & Thompson, S. B. (2008). Predicting Excess Stock Returns out of Sample: Can Anything Beat the Historical Average? Review of Financial Studies, 21(4), 1509-1531. https://doi.org/10.1093/rfs/hhm055
  • Cardarelli, R., Elekdag, S., & Lall, S. (2011). Financial stress and economic contractions. Journal of Financial Stability, 7(2), 78-97. https://doi.org/10.1016/j.jfs.2010.01.005
  • Clark, T. E., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 138(1), 291-311. https://doi.org/10.1016/j.jeconom.2006.05.023
  • George, T. J., & Hwang, C. Y. (2004). The 52‐week high and momentum investing. Journal of Finance, 59(5), 2145-2176. https://doi.org/10.1111/j.1540-6261.2004.00695.x
  • Gu, S., Kelly, B. T., & Xiu, D. (2018). Empirical Asset Pricing via Machine Learning. SSRN working paper. http://dx.doi.org/10.2139/ssrn.3159577. https://doi.org/10.2139/ssrn.3159577
  • Gupta, R., Mwamba, J. W. M., & Wohar, M. E. (2018). The role of partisan conflict in forecasting the U.S. equity premium: A nonparametric approach. Finance Research Letters, 25, 131-136. https://doi.org/10.1016/j.frl.2017.10.023
  • Kandel, S., & Stambaugh, R. F. (1996). On the predictability of stock returns: an asset‐allocation perspective. Journal of Finance, 51(2), 385-424. https://doi.org/10.1111/j.1540-6261.1996.tb02689.x
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807-814.
  • Neely, C. J., Rapach, D. E., & Tu, J. et al. (2014). Forecasting the Equity Risk Premium: The Role of Technical Indicators. Management Science, 60(7), 1772-1791. https://doi.org/10.1287/mnsc.2013.1838
  • Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy. Review of Financial Studies, 23(2), 821-862. https://doi.org/10.1093/rfs/hhp063
  • Rapach, D., & Zhou, G. (2013). Forecasting stock returns. In Handbook of Economic Forecasting (pp. 328-383). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53683-9.00006-2
  • Srivastava, N., Hinton, G., & Krizhevsky, A. et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.
  • Tibshirani, R. (2011). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 73(3), 267-288. https://doi.org/10.1111/j.1467-9868.2011.00771.x
  • Tikhonov, A. N., Leonov, A. S., & Yagola, A. G. (2018). Nonlinear ill-posed problems. London: Chapman & Hall. ISBN 0412786605.
  • Welch, I., & Goyal, A. (2008). A Comprehensive Look at the Empirical Performance of Equity Premium Prediction. Review of Financial Studies, 21(4), 1455-1508. https://doi.org/10.1093/rfs/hhm014

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
23943440

YADDA identifier

bwmeta1.element.ojs-doi-10_61351_mf_v1i1_2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.