Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2023 | 13 | 1 | 239-256

Article title

Zaburzenia wyższych funkcji wzrokowych u dzieci – wyzwania diagnostyczne

Content

Title variants

EN
Disorders of higher visual functions in children – diagnostic challenges

Languages of publication

Abstracts

EN
The article explores the issue of higher visual function disorders in children with disabilities and developmental disorders, emphasizing the importance of reliable and interdisciplinary diagnosis for effective therapy and education. Drawing on recent empirical research, the article characterizes the role of the dorsal and ventral streams - higher structures of the visual pathway - in organizing visual information. The operational mechanism of these streams in specific cognitive tasks challenges the conventional two-path processing model, revealing the interconnected nature of their functioning. The article further highlights the functional consequences of cortical-level visual processing disorders, specifically in relation to the activity and skills required for successful learning in school settings. Additionally, the article provides a review of techniques and tools used to assess visual functions, which are dependent on the proper functioning of the ventral and dorsal streams. In conclusion, the article raises three key challenges in diagnosing higher visual functions in children: the necessity of interdisciplinary collaboration among specialists for accurate identification of disorders, the potential similarity of symptoms to other clinical conditions leading to misdiagnosis, and the lack of standardized diagnostic tools. The article underscores the importance of a comprehensive and collaborative approach to diagnosing and addressing higher visual function disorders in children, highlighting the need for improved diagnostic tools and interdisciplinary cooperation among professionals in the field.
PL
Artykuł opisuje zagadnienie zaburzeń wyższych funkcji wzrokowych u dzieci z niepełnosprawnościami oraz zaburzeniami rozwojowymi dla potrzeb rzetelnej i interdyscyplinarnej diagnozy dla terapii i edukacji. Na podstawie najnowszej literatury zweryfikowano rolę oraz sposoby oceny funkcjonowania wyższych struktur drogi wzrokowej – strumieni grzbietowego i brzusznego w organizacji informacji wzrokowych. Mechanizm działania strumieni w określonych zadaniach poznawczych pokazuje, że do tej pory uznawany, dwuścieżkowy model przetwarzania może nie odzwierciedlać rzeczywistej, opartej na wzajemnej interakcji pracy strumieni. Konsekwencje funkcjonalne zaburzeń przetwarzania wzrokowego na poziomie korowym przedstawiono w odniesieniu do aktywności i umiejętności niezbędnych dziecku w nauce szkolnej. Dokonano również przeglądu technik i narzędzi badania funkcji wzrokowych, za których prawidłowe funkcjonowanie odpowiadają strumienie brzuszny i grzbietowy. W konkluzji zwrócono uwagę na trzy główne problemy w diagnozie wyższych funkcji wzrokowych u dzieci: konieczność współpracy interdyscyplinarnej specjalistów w identyfikowaniu zaburzeń, podobieństwo objawów do innych jednostek klinicznych i mylne diagnozy, niedobór wystandaryzowanych narzędzi diagnostycznych.

Year

Volume

13

Issue

1

Pages

239-256

Physical description

Dates

published
2023

Contributors

  • Instytut Badań Edukacyjnych, Polska
  • Uniwersytet Marii Curie-Skłodowskiej, Polska
  • Centrum Orticus w Grodzisku Mazowieckim, Polska
  • Uniwersytet Medyczny w Łodzi, Polska

References

  • Alnawmasi, M. M., Chakraborty, A., Dalton, K., Quaid, P., Dunkley, B. T., Thompson, B. (2019). The effect of mild traumatic brain injury on the visual processing of global form and motion. Brain Injury, 33(10), 1354-1363.
  • Atkinson, J. (2017). The Davida Teller Award Lecture, 2016 visual brain development: A review of ‘‘Dorsal Stream Vulnerability’’-Motion, mathematics, amblyopia, actions, and attention. Journal of Vision, 17(3), Article 26.
  • Atkinson, J., Anker, S., Braddick, O., Nokes, L., Mason, A., & Braddick, F. (2001). Visual and visuospatial development in young children with Williams syndrome. Developmental Medicine & Child Neurology, 43(5), 330–337.
  • Bennett, C. R., Bauer, C. M., Bailin, E. S., Merabet, L. B. (2020). Neuroplasticity in Cerebral Visual Impairment (CVI): Assessing Functional Vision and the Neurophysiological Correlates of Dorsal Stream Dysfunction. Neuroscience and Biobehavioral Reviews, 108, 171-181.
  • Bernstein, M., Yovel, G. (2015). Two neural pathways of face processing: A critical evaluation of current models. Neuroscience and Biobehavioral Reviews, 55, 536–546.
  • Borowiak, K., Maguinness, C., Kriegstein, K. (2020). Dorsal‐movement and ventral‐form regions are functionally connected during visual‐speech recognition. Human Brain Mapping, 41(4), 952–972.
  • Braddick, O. J., O’Brien, J. M. D., Wattam-Bell, J., Atkinson, J., Hartley, T., Turner, R. (2001). Brain areas sensitive to coherent visual motion. Perception, 30, 61-72.
  • Castaldi, E., Turi, M., Cicchini, G. M., Gassama, S., Eger, E. (2022). Reduced 2D form coherence and 3D structure from motion sensitivity in developmental dyscalculia. Neuropsychologia, 10;166:108140.
  • Chen, N., Cai, P., Zhou, T., Thompson, B. (2016). Perceptual learning modifies the functional specializations of visual cortical areas. Proceedings of the National Academy of Sciences, 113(20):5724–5729.
  • Chokron, S, Kovarski, K, Dutton, G. N. (2021). Cortical Visual Impairments and Learning Disabilities. Frontiers in Neuroscience, 13;15:713316.
  • Cowie, D., Braddick, O., Atkinson J. (2012). Visually guided step descent in children with Williams syndrome. Developmental Science, 15(1):74-86.
  • Dutton, G. N. (2006) Cerebral visual impairment: working within and around the limitations of vision. W: E. Dennison, A. H. Lueck (red.), Proceedings of the Summit on Cerebral/ Cortical Visual Impairment: Educational, Family and Medical Perspectives. New York: AFB Press.
  • Dutton, G. N., Calvert, J., Ibrahim, H., Macdonald, E., McCulloch, D. L., Macintyre-Beon, C. (2010b). Structured clinical history taking for cognitive and perceptual visual dysfunction and for profound visual disabilities due to damage to the brain in children. W: G. D. Dutton, M. Bax (red.), Visual Impairment in Children Due to Damage to the Brain, London: Mac Keith Press.
  • Dutton, G. N., Chokron, S., Little, S., McDowell, N. (2017). Posterior parietal visual dysfunction: An exploratory review. Vision Development and Rehabilitation, 3, 10–22.
  • Dutton, G.N., Cockburn, D., McDaid, G., Macdonald, E. (2010). Practical approaches for the management of visual problems due to cerebral visual impairment. W: G.N. Dutton, M. Bax (red.), Visual Impairment in Children Due to Damage to the Brain (s. 217–226). London: Mac Keith Press.
  • Evans, C., Edwards, M. G., Taylor, L. J., Ietswaart, M. (2016). Impaired communication between the dorsal and ventral stream: Indications from apraxia. Frontiers in Human Neuroscience, 10, Article 8.
  • Freud, E., Behrmann, M., Snow, J. C. (2020). What Does Dorsal Cortex Contribute to Perception? Open Mind, 4, 40–56.
  • Freud, E., Plaut, D.C. and Behrmann, M. (2019). Protracted developmental trajectory of shape processing along the two visual pathways. Journal of Cognitive Neuroscience, 31, 1589-1597.
  • Goodale, M. A. (2013). Separate visual systems for perception and action: a framework for understanding cortical visual impairment. Developmental Medicine and Child Neurology, 55(4), 9-12.
  • Goodale, M. A., Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20-5.
  • Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S., Facoetti, A. (2016). Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia. Cerebral Cortex, 17;26(11):4356-4369.
  • Gummel, K., Ygge, J., Benassi, M., Bolzani, R. (2012). Motion perception in children with foetal alcohol syndrome. Acta Paediatrica, 101(8):e327-32.
  • Gunn, A., Cory, E., Atkinson, J., Braddick, O., Wattam-Bell, J., Guzzetta, A, Cioni, G. (2002). Dorsal and ventral stream sensitivity in normal development and hemiplegia. NeuroReport, 7;13(6), 843-847.
  • Hebart, M. N., Hesselmann, G. (2012). What visual information is processed in the human dorsal stream? The Journal of Neuroscience, 32(24), 8107–8109.
  • Hyvärinen L., Jacob N. (2011). What and How Does This Child See? Assessment of Visual Functioning for Development and Learning. Helsinki 2011: Vistest.
  • Ingle, D. (1967). Two visual mechanisms underlying the behaviour of fish. Psychologische Forschung, 31,44-51.
  • Kogan, C. S., Boutet I., Cornish K., Zangenehpour S., Mullen K. T., Holden J. J., Der Kaloustian V. M., Andermann E., Chaudhuri A. (2004). Differential impact of the fMR1 gene on visual processing in fragile X syndrome. Brain 127, (Pt. 3), 591–601.
  • Kooiker M. J., Pel J. J., van der Steen-Kant S. P., van der Steen J. (2016). A Method to Quantify Visual Information Processing in Children Using Eye Tracking. Journal of Visualized Experiments, 9, 54031.
  • Kravitz, D. J., Saleem, K. S., Baker, C. I., Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217-30.
  • Leung, M. P., Thompson, B., Black, J., Dai, S., Alsweiler, J. M. (2018). The effects of preterm birth on visual development. Clinical and Experimental Optometry, 101(1), 4-12.
  • Levi, D. M. (2013). Linking assumptions in amblyopia. Visual Neuroscience, 30(5-6):277-87.
  • Mandolesi L., Addona F., Foti F., Menghini D., Petrosini L., Vicari S. (2009). Spatial competences in Williams syndrome: a radial arm maze study. International Journal of Developmental Neuroscience, 27, 205–213.
  • Manley, C. E., Bennett, C. R., Merabet, L. B. (2022). Assessing Higher-Order Visual Processing in Cerebral Visual Impairment Using Naturalistic Virtual-Reality-Based Visual Search Tasks. Children (Basel), 26;9(8):1114..
  • Micheletti, S., Corbett, F., Atkinson, J., Braddick, O., Mattei, P., Galli, J., Calza, S., Fazzi, E. (2021). Dorsal and Ventral Stream Function in Children With Developmental Coordination Disorder. Frontiers in Human Neuroscience, 24;15:703217.
  • Milner, A. D., Goodale, M. A. (2008). Mózg wzrokowy w działaniu. Warszawa: Wydawnictwo Naukowe PWN.
  • Morel, A., Bullier, J. (1990). Anatomical segregation of dwo cortical visual pathways in the macaque monkey. Visual Neuroscience, 4, 555-578.
  • Nestmann, S., Karnath, H. O., Rennig, J. (2022). The role of ventral stream areas for viewpoint-invariant object recognition. Neuroimage, 1;251:119021.
  • Pawletko, T., Chokron, S., and Dutton, G. N. (2014). Considerations in behavioral diagnoses of CVI: issues, cautions, and potential outcomes. W: A. Hall Lueck and G. N. Dutton Impairment of vision due to disorders of the visual brain in childhood: a practical approach, eds A. Hall Lueck and G. N. Dutton (USA: AFB)
  • Philip, S. S., Dutton, G. N. (2014). Identifying and characterising cerebral visual impairment in children: a review. Clinical and Experimental Optometry, 97(3), 196-208..
  • Rosazza, C., Cai, Q., Minati, L., Paulignan, Y., Nazir, T. A. (2009). Early involvement of dorsal and ventral pathways in visual word recognition: an ERP study. Brain Research, 26 (1272), 32-44.
  • Schneider, G. E. (1967). Contrasting visuomotor functions of tectum and cortex in the golden hamster. Psychologische Forschung, 31,52-62.
  • Serino, A., Noel, JP., Galli, G. (2015). Body part-centered and full body-centered peripersonal space representations. Scientific Reports, 5, 18603.
  • Sheth, B. R., Young, R. (2016). Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information. Frontiers in Integrative Neuroscience, 22, 10-37.
  • Silva, A. E., Harding, J. E., McKinlay, Ch., Dai, D. W. T., Nivins, S., Shah, R. K., Thompson, B. (2022). Dorsal and ventral stream associations with autistic traits in children. Investigative Ophthalmology & Visual Science, 63,(7), 4305.
  • Ungerleider, L. G., Mishkin, M. (1982). Two cortical visual systems. W: D. J. Ingle, M. A. Goodale, R. J. W. Mansfield (red.), Analysis of visual behavior (s. 549-586). Cambridge: MIT Press.
  • van der Zee, Y. J., Stiers, P. L. J., Evenhuis, H. M. (2022). Object Recognition and Dorsal Stream Vulnerabilities in Children With Early Brain Damage. Frontiers in Human Neuroscience, 12;16:733055.
  • van Polanen, V., Davare, M. (2015). Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia, 79, 186-91.
  • Walkiewicz- Krutak, M. (2018). Mózgowe uszkodzenie widzenia u małych dzieci. Studium teoretyczno – empiryczne. Warszawa: Wydawnictwo Akademii Pedagogiki Specjalnej.
  • Williams, C., Northstone, K., Sabates, R., Feinstein, L., Emond, A., (2011). Visual Perceptual Difficulties and Under-Achievement at School in a Large Community-Based Sample of Children. PLoS ONE 6(3): e14772.
  • Zhou, W., Wang, X., Xia, Z., Bi, Y., Li, P., Shu, H. (2016). Neural Mechanisms of Dorsal and Ventral Visual Regions during Text Reading. Frontiers in Psychology, 15;7:1399.

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
59346006

YADDA identifier

bwmeta1.element.ojs-doi-10_21697_fp_2023_1_17
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.