Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2024 | 28 | 3 | 9-23

Article title

Public Support for Emigration Post-EU Accession: An LM Model Analysis

Authors

Content

Title variants

PL
Poparcie społeczne dla emigracji po przystąpieniu do UE: analiza z wykorzystaniem ukrytych modeli LM

Languages of publication

Abstracts

PL
Cel: Celem badania jest określenie wpływu zmiennych socjodemograficznych (tj. wiek, wykształcenie, stan cywilny, status społeczno-zawodowy) na nastawienie do emigracji po wejściu Polski do UE. Metodyka: Zastosowano ukryty model Markowa z wykorzystaniem zmiennych towarzyszących, mających wpływ nie na ukrytą, lecz na obserwowaną część modelu LM. Model ten, uwzględniający zmienne w czasie efekty losowe, został wykorzystany w celu analizy zbioru panelowego dotyczącego gotowości Polaków do pracy zagranicą w latach 2005–2015. Wyniki: Opierając się na polskim panelowym badaniu społecznym, tj. Diagnozie Społecznej, pokazano, że analizowany zbiór można wyjaśnić za pomocą dwóch stanów ukrytych, charakteryzujących się podobną skłonnością do emigracji. Zaobserwowano, że w latach 2011–2015 (następujących po pierwszej fazie akcesyjnej) Polacy wykazali większą stabilność w poglądach dotyczących emigracji. Na podstawie dostępnych (stałych i zmiennych w czasie) zmiennych towarzyszących pokazano, że osoby o pewnych cechach są bardziej skłonne do migracji niż inne. Implikacje i rekomendacje: Przedstawione podejście może być zastosowane w celu ukazania zmieniających się zachowań społecznych również w innych krajach, które doświadczyły masowego odpływu ludności. Ponadto analiza uzyskanych wyników może posłużyć rozwiązywaniu wyzwań politycznych i skutecznemu zarządzaniu migracją, także w przypadku przyszłych danych, dotyczących nastawienia do ukraińskich uchodźców przybywających obecnie do Polski. Oryginalność/wartość: Główną zaletą zastosowanego modelu, w porównaniu z standardowym modelem z efektami losowymi lub modelem klas ukrytych ze zmiennymi towarzyszącymi, jest to, że nieobserwowalna heterogeniczność może być zmienna w badanym czasie. Inaczej niż w badaniach poprzednich założono tu, że udzielane odpowiedzi respondentów mogą różnić się z powodu nieobserwowalnej, zmiennej w czasie współzmiennej, takiej jak „uczucia patriotyczne”. Zastosowany model, uwzględniający również wagi badania panelowego, pozwala także na uzyskanie lepszego dopasowania w porównaniu ze standardowym modelem efektów losowych, zaś parametry modelu LM umożliwiają dodatkowo ocenę dynamiki badanej zmiennej ukrytej.
EN
Aim: Since 2004 European countries, such as Germany and the United Kingdom, have noted an unusual upward trend of migrants from Central and Eastern Europe. The author aimed to examine the popular perception of emigration from Poland in the years following EU accession. Moreover, the study presents the effect of the observed socio-economic features (i.e. age, education, marital status, socio-professional status) affecting the conditional probabilities of the response variable, considering also the unobserved heterogeneity between the respondents representing Polish society. Methodology: The study was based on the Latent Markov (LM) models which allowed finding homogenous groups of respondents on the basis of their definite responses measured at different points in time. The author compared the respondents behaviour in the groups arriving just after EU accession, in relation to the other surveyed surges in migration using the Latent Markov models with different types of constraints. Then, to show the effect of observable socio-economic characteristics, taking into account the unobserved heterogeneity between the subjects, the study employed the version including the covariates in the measurement part of the model. Results: Based on the Polish longitudinal social survey, i.e. Social Diagnosis, the study shows that the analysed data can be explained by two latent states of Poles sharing the same propensity towards emigration. It was observed that Poles were more stable in their feelings concerning their approach to the emigration in the period 2011–2015 (following the first post-accession phase). Based on the available (time-constant and time-varying) covariates, the author demonstrated that certain types of people are more prone to migrate than others. Implications and recommendations: The presented approach could be applied to data from other economies – both within the EU and outside it – which have also seen massive outflows of people, to show the changing behaviour of society. This methodology might also be helpful with policy challenges and the effective management of migration, as well as for future data concerning the attitudes towards refugees from Ukraine coming to Poland at present. Originality/value: Unlike previous studies, the author assumed that the attitudes toward emigration can vary on the response variable, i.e. because of the unobserved covariate such as ‘patriotic behaviour’ (unobserved heterogeneity), which may change over time. The study applied the appropriate LM techniques extended to include the covariates in the measurement part of the LM model and the longitudinal weights of the survey. Note that the applied model also allowed achieving a better measure-of-fit compared to the standard random-effect model, and the parameters of the LM model additionally enabled to evaluate the dynamic of the latent trait.

Contributors

author
  • University of Economics in Katowice

References

  • Altonji, J. G., & Card, D. (1991). The Effects of Immigration on the Labor Market Outcomes of Less-Skilled Natives. In J. M. Abowd, & R. B. Freeman (Eds.), Immigration, Trade and the Labor Market (pp. 201–234). University Chicago Press.
  • Akaike, H. (1973). Information Theory as an Extension of the Maximum Likelihood Principle. In B. N. Petrov, & F. Csaki (Eds.), Second International Symposium on Information Theory (pp. 267–281). Akademiai Kiado.
  • Anacka, M., & Okólski, M. (2010). Direct Demographic Consequences of Post-Accession Migration for Poland. In R. Black, G. Engbersen, M. Okólski, & C. Pantiru (Eds.), A Continent Moving West? EU Enlargement and Labour Migration from Central and Eastern Europe (pp. 141–163). Amsterdam University Press.
  • Angrist, J. D., & Kugler, A. D. (2003). Protective or Counter-Productive? Labour Market Institutions and the Effect of Immigration on EU Natives. The Economic Journal, 113, 302– 331. https://doi.org/10.1111/1468-0297.00136
  • Aydemir, A., & Borjas, G. J. (2007). Cross-Country Variation in the Impact of International Migration: Canada, Mexico, and the United States. Journal of the European Economic Association, 5, 663–708. https://www.jstor.org/stable/40005079
  • Bartolucci, F. (2007). A Class of Multidimensional IRT Models for Testing Unidimensionality and Clustering Items. Psychometrika, 72, 141–157. https://doi.org/10.1007/s11336-005-1376-9
  • Bartolucci, F., & Farcomeni, A. (2009). A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure. Journal of the American Statistical Association, 104, 816–831. https://www.jstor.org/stable/40592225 Bartolucci, F., Lupparelli, M., & Montanari, G. E. (2009). Latent Markov Model for Binary Longitudinal Data: An Application to the Performance Evaluation of Nursing Homes. Annals of Applied Statistics, 3, 611–636. https://doi.org/10.1214/08AOAS230
  • Bartolucci, F., Farcomeni, A., & Pennoni, F. (2013) Latent Markov Models for Longitudinal Data. Chapman and Hall/CRC.
  • Bartolucci, F., Pandolfi, S., & Pennoni, F. (2017) LMest: An R Package for Latent Markov Models for Longitudinal Categorical Data. Journal of Statistical Software, 81, 1–38. https://doi.org/10.18637/JSS.V081.I04
  • Baum, L., Petrie, T., Soules, G., & Weiss, N. (1970). A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. Annals of Mathematical Statistics, 41, 1–38.
  • Biavaschi, C., Burzyński, M., Elsner, B., & Machado, J. (2020). Taking the Skill Bias out of Global Migration. Journal of Development Economics, 142, 1–69. https://doi.org/10.1016/j.jdeveco.2018.12.006
  • Borjas, G. J. (2003). The Labor Demand Curve Is Downward Sloping: Reexamining the Impact of Immigration on the Labor Market. Quarterly Journal of Economics, 118, 1335–1374. https://www.jstor.org/stable/25053941
  • Budnik, K. B. (2007). Migration Flows and Labour Market in Poland. National Bank of Poland Working Paper, 44, 1–28. https://doi.org/10.2139/ssrn.1118768
  • Card, D., & Lewis, E. G. (2007). The Diffusion of Mexican Immigrants during the 1990s: Explanations and Impacts. In G. J. Borjas (Ed.), Mexican Immigration (pp. 193–227). University of Chicago Press.
  • CEED (2015). The Economic Migration of Poles, Centre for Entrepreneurship, Education and Development, https://www.ceed.ca
  • Central Statistical Office of Poland (2015). Demographic Yearbook of Poland 2015. Central Statistical Office of Poland.
  • Clemens, M. A. (2011). Economics and Emigration: Trillion-Dollar Bills on the Sidewalk? Journal of Economic Perspectives, 25(3), 83–106.
  • Clemens, M. A., Lewis, E. G., & Postel, H. M. (2018). Immigration Restrictions as Active Labor Market Policy: Evidence from the Mexican Bracero Exclusion. American Economic Review, 108(6), 1468–1487. https://doi.org/10.1257/jep.25.3.83
  • Czapiński, J., & Panek, J. (Eds.) (2015). Social Diagnosis 2015. Objective and Subjective Quality of Life in Poland. Rada Minitoringu Społecznego. http://www.diagnoza.com/data/report/report_2015.pdf
  • D’Amuri, F., Ottaviano, G. I. P., & Peri, G. (2010). The Labor Market Impact of Immigration in Western Germany in the 1990s. European Economic Review, 54, 550–570. https://doi.org/10.1016/j.euroecorev.2009.10.002
  • Dempster, A. P., Laird, N. M., & Rubin, D.B. (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm (with discussion). Journal of the Royal Statistical Society B, 39, 1–38.
  • Domagała, A., Kautsch, M., Kulbat, A., & Parzonka, K. (2022). Exploration of Estimated Emigration Trends of Polish Health Professionals. International Journal of Environmental Research and Public Health, 19(2), 1–18. https://doi.org/10.3390/ijerph19020940
  • Dubas-Jakóbczyk, K., Domagała, A., Kiedik, D., & Pena-Sanchez, J. N. (2020). Satisfaction and Migration Intentions of Physicians in Three University Hospitals in Poland. International Journal of Environmental Research and Public Health, 17, 1–43.
  • Duszczyk, M., Górny A., Kaczmarczyk, P., & Kubisiak A. (2023). War Refugees from Ukraine in Poland – One Year after the Russian Aggression. Socioeconomic Consequences and Challenges. Regional Science Policy & Practice, 15(1), 181–200. https://doi.org/10.1111/rsp3.12642
  • Dustmann, C., Frattini, T., & Preston, I. (2013) The Effect of Immigration along the Distribution of Wages. Review of Economics Studies, 80, 145–173. https://www.jstor.org/stable/23355776
  • Dustmann, C., Frattini, T., & Rosso, A. (2015). The Effect of Emigration from Poland on Polish Wages. Scandinavian Journal of Economics, 117(2), 522–564. https://www.jstor.org/stable/43673712
  • Düvel, F. (2004), Polish Undocumented Immigrants, Regular High-skilled Workers and Entrepreneurs in the UK: A Comparative Analysis of Migration Patterns, Strategies and Identity Processes. Prace Migracyjne 54, Institute for Social Studies, University of Warsaw.
  • Eade J., Drinkwater, S., & Garapich, M. (2006). Class and Ethnicity: Polish Migrant Workers in London. University of Surrey, Centre for Research on Nationalism, Ethnicity and Multiculturalism (CRONEM) Research Note.
  • Elsner, B. (2013). Does Emigration Benefit the Stayers? Evidence from EU Enlargement. Journal of Population Economics, 26, 531–553. https://doi.org/10.1007/s00148-012-0452-6
  • Fife City Council (2007). Migrant Workers in Fife Survey 2007. Fife City Council.
  • Genge, E. (2023). An Evaluation of Self-reported Material Well-being Using Latent Markov Models with Covariates. Longitudinal and Life Course Studies, 14(4), 514–541. https://doi.org/10.1332/175795921X16719290621875
  • Genge, E. (2017). A Longitudinal Study of Polish Attitudes to Emigration: A Latent Markov Model Approach. Argumenta Oeconomica Cracoviensia, 16, 37–49.
  • Genge, E., & Bartolucci, F. (2022). Are Attitudes toward Immigration Changing in Europe? An Analysis Based on Latent Class IRT Models. Advances in Data Analysis and Classification, 16, 235–271.
  • Glitz, A. (2012). The Labor Market Impact of Immigration: A Quasi-Experiment Exploiting Immigrant Location Rules in Germany. Journal of Labor Economics, 30, 175–213.
  • Grzymala-Kazlowska, A., & Phillimore, J. (2019). Superdiversity and Its Relevance for Central and Eastern European Migration Studies. The Case of Polish Migrants in the UK. Central and Eastern European Migration Review, 8(2), 39–59. https://doi.org/10.17467/ceemr.2019.16
  • Gumuła, W., Gucwa, A., Opioła, Z., & Nalepa, W. (2011). Rynek pracy w Polsce. Wynagrodzenia, produktywność pracy i migracje w listopadzie 2010 r. – na tle panelowych badań opinii pracodawców i bezrobotnych w latach 2006–2010. Materiały i Studia 255. Narodowy Bank Polski.
  • Hanson, G. (2007). Emigration, labor supply and earnings in Mexico. In G. J. Borjas (Ed.), Mexican Immigration to the United States (pp. 289–328). University of Chicago Press.
  • Home Office (2008). Accession Monitoring Report: May 2004 to March 2008. Home Office.
  • Iredale, R. (2001). The Migration of Professionals: Theories and Typologies. International Migration, 39, 7–15. https://doi.org/10.1111/1468-2435.00169
  • Jaeger, D. A. (2007). Skill Differences and the Effect of Immigrants on the Wages of Natives. Mimeo, College of William and Mary.
  • Kaczmarczyk, P. (2014). Efekty migracji w odniesieniu do rynku pracy – przypadek polskich migracji poakcesyjnych. Studia BAS 40, 4, 55–80.
  • Kaczmarczyk, P., & Okólski, M. (2005). Migracje specjalistów wysokiej klasy w kontekście członkostwa Polski w Unii Europejskiej. Biblioteka Europejska 36. Office of the Committee for European Integration.
  • Kalton, G. (1989). Modeling Considerations: Discussion from a Survey Sampling Perspective. In D. Kasprzyk, G. Duncan, G. Kalton, & M. Singh (Eds.), Panel Surveys (pp. 575–585). Wiley
  • Kostrzewa, Z., & Szałys, D. (2013). Migracje zagraniczne ludności: Narodowy Spis Powszechny Ludności i Mieszkań 2011. GUS.
  • Kowalska, K. (2012). Does post-enlargement emigration from Poland impact on the wages of Poles? Employment and Economy in Central and Eastern Europe, 3(1), 1–15.
  • Lock, F. K., & Carrieri, D. (2022). Factors Affecting the UK Junior Doctor Workforce Retention Crisis: An integrative Review. BMJ Open, 12, 1–11. https://doi.org/10.1136/bmjopen-2021-059397
  • Lopez Rodriguez, M. (2010). Migration and a Quest for ’Normalcy’. Polish Migrant Mothers and the Capitalization of Meritocratic Opportunities in the UK. Social Identities, 16(3), 339–358. https://doi.org/10.1080/13504630.2010.482422
  • Manacorda, M., Manning, A., & Wadsworth, J. (2012). The Impact of Immigration on the Structure of Wages: Theory and Evidence from Britain. Journal of the European Economic Association, 10, 120–151. https://doi.org/10.1111/j.15424774.2011.01049.x
  • Mishra, P. (2007). Emigration and Wages in Source Countries: Evidence from Mexico. Journal of Development Economics, 82(1), 180–199. https://doi.org/10.1016/j.jdeveco.2005.09.002
  • National Bank of Poland (2008). Informacja o kondycji sektora przedsiębiorstw ze szczególnym uwzgędnieniem stanu koniunktury w IV kw. 2008. Departament Analiz Makroekonomicznych i Strukturalnych. NBP.
  • Ottaviano, G. I. P., & Peri, G. (2012). Rethinking the Effects of Immigration on Wages. Journal of the European Economic Association, 10, 152–197. https://doi.org/10.1111/j.1542-4774.2011.01052.x
  • Orchard, P., Szymanski, A., & Vlahova, N. (2007). A Community Profile of New EU8 Migrants in Edinburgh and Evaluation of their Access to the Key Service. Scottish Government Social Research.
  • Pennoni, F., & Genge, E. (2020). Analysing the Course of Public Trust via Hidden Markov Models: A Focus on Polish Society. Statistical Methods & Applications, 29, 299–425. https://doi.org/10.1007/S10260-019-00483-9
  • Pszczółkowska, D., Bojarczuk, S., Duszczyk, M., Matuszczyk, K., Szyszkowska, E. (2024). Did Covid-19 Make Things Worse? The Pandemic as a Push Factor Stimulating the Emigration Intentions of Junior Doctors from Poland: A Mixed Methods Study. PLoS ONE, 19(4), 1–16. https://doi.org/10.1371/journal.pone.0301757
  • Przekota, G. (2011). Reakcja gospodarki krajowej na otwarcie zagranicznego rynku pracy. Zeszyty Naukowe Wydziału Nauk Ekonomicznych Politechniki Koszalinskiej, 15, 179–191.
  • Ryan, L. (2011). Migrants’ Social Networks and Weak Ties. Sociological Review, 59(4), 707–724. https://doi.org/10.1111/j.1467-954X.2011.02030.x
  • Ryan, L. (2018). Narratives of Settling in Contexts of Mobility: A Comparative Analysis of Irish and Polish Highly Qualified Women Migrants in London. International Migration, 57(3), 177–804. https://doi.org/10.1111/imig.12493
  • Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistic, 6, 461–464.
  • Stapleton, L. M. (2002). The Incorporation of Sample Weights into Multilevel Structural equation models. Structural Equation Modeling, 9, 475–502. https://doi.org/10.1207/S15328007SEM0904_2
  • Strzelecki, P., Saczuk, K., Grabowska I., & I. Kotowska. (2015). Rynek pracy. In J. Czapiński, & T. Panek (Eds.), Diagnoza Społeczna 2015 (pp. 129–173). Rada Minitoringu Społecznego.
  • Thomas, S. L., & Heck, R. H. (2001). Analysis of Large-Scale Secondary Data in Higher Education Research: Potential Perils Associated with Complex Sampling Designs. Research in Higher Education, 42(5), 517–540. https://doi.org/10.1023/A:1011098109834
  • Trevena, P. (2008). Degradacja czy poszukiwanie niezależności? Proces podejmowania decyzji migracyjnych przez wykształconych Polaków wykonujących pracę niewykwalifikowaną w Londynie. In A. Śliz (Ed.), Społeczności lokalne: Postawy migracyjne młodych Polaków (pp. 21–47). Opole University.
  • Walerych, M. (2020). The Economic Effects of Emigration: A Literature Review. Social Inequalities and Economic Growth, 62(2), 121–135. https://doi.org/10.15584/nsawg.2020.2.8
  • White, A. (2011). Polish Families and Migration since EU Accession. The Policy Press.
  • Witek, E. (2010) Analysis of Massive Emigration from Poland: The Model-based Clustering Approach? In A. Fink, B. Lausen, W. Seidel & A. Ultsch (Eds.), Advances in Data Analysis, Data Handling and Business Intelligence. Proceedings of the 32nd Annual Conference of the Gesellschaft für Klassifikation (pp. 615–624). Springer.
  • Wojtas, M., & Białowąs, T. (2018). Impact of Emigration on Poland’s Economy after 2004. Regional Science Policy & Practice, 23, 95–114.
  • Zhou, M., Wang, W., Loa, S. P., & Kan M.-Y. (2023). Moving in the Time of COVID-19: How Did the Pandemic Situations Affect the Migration Decisions of Hong Kong People? Asian Population Studies, 19, 204–227. https://doi.org/10.1080/17441730.2023.2193481

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
59125031

YADDA identifier

bwmeta1.element.ojs-doi-10_15611_eada_2024_3_02
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.