Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 608

Liczba wyników na stronie
first rewind previous Strona / 31 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sztuczne sieci neuronowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 31 next fast forward last
PL
W niniejszym artykule przedstawiono koncepcję i implementację modelu do rozpoznawania ras psów na podstawie zdjęcia. Do realizacji zadania wykorzystano model głębokiej sieci neuronowej bazujący na strukturze InceptionV3. Sieć została wytrenowana i przetestowana na zbiorze przypadków uczących liczącym ponad 20 tys. zdjęć 120 ras psów z zastosowaniem transferu wiedzy. Zbadano również wpływ jakości zdjęć na wyniki klasyfikacji. Sieć uzyskała bardzo dobre rezultaty zarówno w przypadku analizy typowych, jak i nietypowych zdjęć.
EN
This article presents the concept and implementation of a model for recognizing dog breeds based on an input image. The task was performed with the use of a deep neural network model based on the InceptionV3 structure. The neural network has been trained and tested on a dataset counting more than 20,000 images of 120 dog breeds using transfer learning technique. The impact of image quality on classification results was also examined. The model obtained very good results in the analysis of both typical and unusual input images.
PL
Prognozowanie zagrożeń wynikających z ekstremalnych warunków meteorologicznych jest jednym z zastosowań pomiarów meteorologicznych. Ekstremalne zjawiska pogodowe mogą powodować masowe uszkodzenia infrastruktury elektroenergetycznej i w konsekwencji prowadzić do długotrwałego pozbawienia zasilania na znacznych obszarach (blackout’u). Wykorzystanie pomiarów meteorologicznych do różnych celów w energetyce jest możliwe dzięki temu, że na słupach sieci 110 kV, na obszarze działania kilku operatorów sieci dystrybucyjnych (OSD), zostało zainstalowanych trzysta kilkadziesiąt punktów pomiarowych, z których na bieżąco, co 15 minut, do centralnych dyspozycji mocy każdego z OSD są przesyłane bieżące parametry pogodowe takie jak prędkość i kierunek wiatru, czy temperatura otoczenia. Wraz z większą ilością danych pomiarowych jest możliwe zastosowanie sztucznych sieci neuronowych do prognozowania warunków meteorologicznych. W artykule przedstawiono koncepcję metody krótkoterminowego prognozowania warunków meteorologicznych, uwzględniającą propagację ich zmian przy wykorzystaniu sieci neuronowych NAR i NARX. Podano także sposób wykorzystywania tych prognoz do generowania ostrzeżeń o zagrożeniach meteorologicznych na potrzeby systemów elektroenergetycznych.
EN
Forecasting threats resulting from extreme meteorological conditions is one of the applications of meteorological measurements. Such extreme weather phenomena can cause massive damage to the power infrastructure and, as a consequence, lead to long-term power loss in large areas (blackout). The use of meteorological measurements for various purposes in the power industry has become possible in national conditions due to the fact that in the years 2012-2019 dynamic rating systems were implemented in the 110 kV network in the area of several distribution system operators (DSOs). Therefore, about 400 meteorological stations (measuring points) have been installed on the 110 kV towers, of which current weather parameters such as wind speed and direction, or temperature are sent to the control center of each DSO every 15 minutes. With more measurement data, it is possible to use artificial neural networks to predict meteorological conditions. The article presents a method of short-term forecasting of meteorological conditions, taking into account the propagation of their changes using the neural networks NAR and NARX. The method of using these forecasts to generate warnings about meteorological hazards for the needs of power systems is also given.
PL
W artykule przedstawiono nową metodę oceny zagrożenia zawałowego dla polskich kopalń miedzi. W tym celu wykorzystano wiele różnych mierzonych przez służby kopalniane parametrów pochodzących z działu górniczego, geologicznego i działu obudowy, jak np.: wytrzymałość skał na rozciąganie, obecność spękań pionowych, rozwarstwienie stropu, zawodnienie górotworu, jego uwarstwienie, postęp frontu eksploatacyjnego, czy też opadnięcie wskaźników SRS. Wieloparametrowa analiza przeprowadzona za pomocą sztucznych sieci neuronowych SSN pozwoliła na predykcję zaistniałych zawałów z 82-procentową skutecznością. Zaproponowana metoda jest metodą dwuetapową, w której należy wyznaczyć dwa wskaźniki: skłonność górotworu do zawału - wskaźnik CP RF , oraz możliwość utrzymania wyrobiska o danej geometrii, obudowie i przewidywanym czasie jego użytkowania - wskaźnik CM RF . Podczas analizy pierwszego wskaźnika należy wziąć pod uwagę 12 czynników, a podczas analizy drugiego dodatkowe 4 (razem 16 czynników). Na podstawie wskaźnika CM RF wyróżniono cztery kategorie zagrożenia zawałowego od I do IV. Na obu etapach analizy i wyznaczania wskaźników CP RF i CMRF podano zakres zalecanych działań inżynierskich, które mogą pomóc w ograniczeniu zagrożenia, lub też w jego właściwym monitorowaniu. Przedstawiona metoda może być dobrym narzędziem do oceny zagrożenia zawałowego w warunkach polskich kopalń miedzi dla inżynierów. Jest łatwa i szybka, a do obliczenia obu wskaźników wystarczy np. arkusz obliczeniowy w programie Excel z obsługą makr.
EN
This paper presents a novel method of roof fall hazard assessment in copper mines in Poland. Various information, that are routinely collected by the mine geological and survey service, mining and support divisions, were used for this purpose. The data included e.g. rock tensile strength, presence of vertical fracturing, splitting of roof rocks, water condition in rock mass, rock mass stratification, excavation advance, and observations from Roof Splitting Indicators (SRS). Multiparameter analysis was carried out with the use of Artificial Neural Network (ANN), and allowed for prediction of the recorded roof falls with confidence as high as 82%. The proposed method involves two stages in which two indexes are determined: the CP RF , index that characterizes the susceptibility of rock mass to collapse, and the CM RF index that quantifies the standing up ability of the working of the specific geometry, specific support pattern and predicted time of its using. The determination of the first index requires analysis of 12 factors, and additional four factors for the second index (altogether 16 factors). Four categories, from I to IV, of roof fall hazard were distinguished based on the CM RF index. Through the two-stage analysis for CP RF and CM RF determination, there was also indicated a range of recommended engineering actions to reduce the rock fall hazard and to improve its monitoring. The presented method is a potentially useful engineering tool for roof fall hazard assessment in the conditions of Polish copper mines. It is uncomplicated and quick, and the computation of the two indexes can be performed on MS Excel worksheet with the use of Macros.
PL
Utworzono wspomaganą ewolucyjnie oraz inspirowaną kwantowo Sztuczną Sieć Neuronową, którą zaimplementowano w Simulinku na bazie danych Rynku Dnia Następnego Towarowej Giełdy Energii Elektrycznej. Dane wejściowe, wagi i biasy poddano kwantyzacji. Kwantowe obliczenia quasi-równoległe przeprowadzono na bazie 100 wygenerowanych kwantowych liczb mieszanych za pomocą metody kwantyzacji na bazie stanów czystych |0> i |1>, a uzyskane w wyniku obliczeń kwantowe liczby mieszane poddano dekwantyzacji za pomocą Sztucznej Sieci Neuronowej (SSN). Model symulacyjny składający się ze wspomaganej ewolucyjnie oraz kwantowo inspirowanej Sztucznej Sieci Neuronowej, oprócz badań symulacyjnych, umożliwia przeprowadzanie badań komparatystycznych uzyskiwanych sygnałów z danymi rzeczywistymi oraz z danymi wyjściowymi z perceptronowej Sztucznej Sieci Neuronowej. Wyniki badań wskazują na wysoką dokładność przeprowadzanego eksperymentu.
EN
An evolutionary-assisted and quantum-inspired Artificial Neural Network was created, which was implemented in Simulink on the Day-Ahead Market of the Polish Power Exchange. Input data, weights and bias were quantized. Quantum quasi-parallel calculations were carried out on the basis of 100 generated quantum mixed numbers using the quantization method based on pure states |0> and |1>, and the resulting quantum mixed numbers were dequantized using another Artificial Neural Network. The implemented simulation model consists of evolutionarily assisted and quantum-inspired Artificial Neural Network, which in addition to simulation studies allows conducting comparative studies of obtained signals with real data and with output data from the perceptron Artificial Neural Network. The test results indicate the high accuracy of the experiment.
5
Content available Sieci neuronowe w rozpoznawaniu pisma odręcznego
EN
Artificial neural networks consist of many simple elements capable of processing data. These are tools inspired by the construction of the human brain, used in machine learning. The aim of the research was to analyze the occuracy of the created neural network in the process of handwriting recognition. The article presents the results obtained during the learning and testing of a convolution network with a different number of hidden layers. Each time learning and testing the network was carried out using the same set of images (taken from the publicly available IAM database) depicting handwritten words in English.
PL
Sztuczne sieci neuronowe składają się z wielu prostych elementów zdolnych do przetwarzania danych. To narzędzia inspirowane budową ludzkiego mózgu, stosowane w uczeniu maszynowym. Celem badań była analiza dokładności odpowiedzi stworzonej sieci neuronowej w procesie rozpoznawania pisma odręcznego. W artykule przedstawiono wy-niki uzyskane podczas nauki i testowania sieci konwolucyjnej o różnej liczbie warstw ukrytych. Każdorazowo uczenie i testowanie sieci realizowane było za pomocą tego samego zbioru obrazów (zaczerpniętych z ogólnodostępnej bazy IAM Handrwiting Database) przedstawiających słowa pisane odręcznie w języku angielskim.
EN
Acquiring data for neural network training is an expensive and labour-intensive task, especially when such data is difficult to access. This article proposes the use of 3D Blender graphics software as a tool to automatically generate synthetic image data on the example of price labels. Using the fastai library, price label classifiers were trained on a set of synthetic data, which were compared with classifiers trained on a real data set. The comparison of the results showed that it is possible to use Blender to generate synthetic data. This allows for a significant acceleration of the data acquisition process and consequently, the learning process of neural networks.
PL
Pozyskiwanie danych do treningu sieci neuronowych, jest kosztownym i pracochłonnym zadaniem, szczególnie kiedy takie dane są trudno dostępne. W niniejszym artykule zostało zaproponowane użycie programu do grafiki 3D Blender, jako narzędzia do automatycznej generacji danych syntetycznych zdjęć, na przykładzie etykiet cenowych. Przy użyciu biblioteki fastai, zostały wytrenowane klasyfikatory etykiet cenowych, na zbiorze danych syntetycznych, które porównano z klasyfikatorami trenowanymi na zbiorze danych rzeczywistych. Porównanie wyników wykazało, że możliwe jest użycie programu Blender do generacji danych syntetycznych. Pozwala to w znaczącym stopniu przyśpieszyć proces pozyskiwania danych, a co za tym idzie proces uczenia sieci neuronowych.
EN
Consumption of fossil energy resources were increased dramatically, due to the economic and population growth. In turn, the consumption of fossil resources causes depletion of resources and contributes to environmental pollution. The European Union's "climate neutrality" initiative requires effective energy management from the member states. By this is meant a resource-efficient and competitive economy in which there is no greenhouse gas emission and where economic growth is decoupled from resource consumption. The article analyzes the level of primary energy consumption in Poland. It was examined whether a 23% drop in energy consumption could be achieved in 2030 compared to the base year and according with energy efficiency assumptions. A methodology for forecasting primary energy consumption based on deep neural networks, in particular on Long Short Term Memory (LSTM) algorithms was also presented.
PL
Zużycie kopalnych surowców energetycznych wzrasta, a wzrost ten jest skorelowany ze wzrostem ludności i rozwojem gospodarczym. Z kolei zużycie kopalnych surowców energetycznych powoduje wyczerpywanie się zasobów i przyczynia się do zanieczyszczenia środowiska. Inicjatywa Unii Europejskiej "neutralność klimatyczna" wymaga od państw członkowskich efektywnego zarządzania energią. Przez co rozumie się zasobooszczędną i konkurencyjną gospodarką, w której nie ma emisji netto gazów cieplarnianych i gdzie wzrost gospodarczy jest oddzielony od zużycia zasobów. W artykule przeanalizowano poziom zużycia energii pierwotnej w Polsce. Zbadano, czy w roku 2030 uda się osiągnąć 23% spadek konsumpcji energii w odniesieniu do roku bazowego, zgodnie z przyjętymi założeniami o efektywności energetycznej. Przedstawiono również metodologię prognozowania zużycia energii pierwotnej opartą na głębokich sieciach neuronowych, w szczególności na algorytmach Long Short Term Memory (LSTM).
PL
Celem pracy było opracowanie metodologii formalizacji wiedzy metalurgicznej na potrzeby wykorzystania jej do tworzenia komputerowych reprezentacji wiedzy dla systemów ekspertowych. Osiągniecie celu wymagało rozwiązania problemów: identyfikacji źródeł wiedzy, pozyskiwania wiedzy, integracji wiedzy, doboru formalnej metody reprezentacji wiedzy a także opracowania jej komputerowej reprezentacji. Jako formę reprezentacji wiedzy wykorzystano sztuczne sieci neuronowe i wskazano na możliwość ich wykorzystania do wspomagania dwóch procesów metalurgicznych, tj. procesu wytwarzania materiałów odlewanych z żeliwa sferoidalnego oraz procesu kucia matrycowego, jednego z procesów przeróbki plastycznej metali.
EN
The aim of the study was to develop a methodology to formalize metallurgical expertise for the purpose of using it to create computer representations of knowledge for expert systems. Achieving the goal required solving problems: identifying knowledge sources, acquiring knowledge, integrating knowledge, choosing a formal method of knowledge representation, and developing its computer representation. As a form of knowledge representation, artificial neural networks were used and the possibility of their use was indicated to support two metallurgical processes, i.e. the process of manufacturing ductile iron cast materials and matrix forging process, one of the metal forming processes.
EN
The article presents a model of operational fuel consumption by a passenger car from the B segment, powered by a spark ignition engine. The model was developed using artificial neural networks simulated in the Stuttgart Neural Network Simulator (SNNS) package. The data for the model was obtained from longterm operational tests, during which data from the engine control unit were recorded via the OBDII diagnostic interface. The model is based on neural networks with two hidden layers, the size of which was selected using an original iterative algorithm. During the structure selection process, a total of 576 different networks were tested. The analysis of the obtained test errors made it possible to select the optimal structure of the 6-19-17-1 model. The network input values were: vehicle speed and acceleration, road slope, throttle opening degree, selected gear number and engine speed. The networks were trained using the efficient RPROP method. A correctly trained network, based on the set parameters, was able to forecast the instantaneous fuel consumption. These forecasts showed a high correlation with the measured values. Average fuel consumption calculated on their basis was close to the real value, which was calculated on the basis of two consecutive fuelings of the vehicle.
PL
W artykule przedstawiono model eksploatacyjnego zużycia paliwa przez samochód osobowy z segmentu B, zasilany silnikiem o zapłonie iskrowym. Model opracowano przy wykorzystaniu sztucznych sieci neuronowych, których działanie symulowano w pakiecie Stuttgart Neural Network Simulator (SNNS). Dane do modelu pozyskano z długotrwałych badań eksploatacyjnych, podczas których rejestrowano przez interfejs diagnostyczny OBDII dane pochodzące z jednostki sterującej silnikiem. Model oparto na sieciach neuronowych o dwu warstwach ukrytych, których wielkość dobrano przy pomocy autorskiego, iteracyjnego algorytmu. Podczas procesu doboru struktury przebadano łącznie 576 różnych sieci. Analiza uzyskanych błędów testowania pozwoliła na wybór optymalnej struktury modelu 6-19-17-1. Wielkościami wejściowymi sieci były: prędkość i przyspieszenie pojazdu, nachylenie drogi, stopień otwarcia przepustnicy, numer wybranego biegu oraz prędkość obrotowa silnika. Sieci uczono przy użyciu wydajnej metody RPROP. Poprawnie nauczona sieć na podstawie zadanych parametrów była w stanie prognozować chwilowe zużycie paliwa. Prognozy te wykazywały wysoką korelację ze zmierzonymi wartościami. Obliczone na ich podstawie średnie zużycie paliwa było zbliżone do rzeczywistej wartości, którą obliczono na podstawie dwu kolejnych tankowań pojazdu.
EN
The paper discusses the use of an artificial neural network to control the operation of wastewater treatment plants with activated sludge. The task of the neural network in this case is to calculate (predict) the readings of the probe measuring the concentration of nitrate nitrogen (V) in one of the biological reactor tanks. Neural networks are known for their ability to universal approximation of virtually any relationship, including the function of many variables, but the process of "training" the network requires the presentation of many sets of input data and corresponding expected results. This is a difficulty in the case of wastewater treatment plants, because some key process parameters are usually not measured online (samples are taken and measurements are taken in the laboratory), and even if they are, the time intervals are large. Bearing in mind the aforementioned difficulty, this work uses a set of input data consisting only of information that can be measured with measuring probes. As a result of the conducted experiments a high compliance of the probe's prediction with the expected values was obtained. The paper also presents data preparation and the network "training" process.
EN
The deformation modulus of the rock mass as a very important parameter in rock mechanic projects generally is determined by the plate load in-situ tests. While this test is very expensive and time-consuming, so in this study a new method is developed to combin artificial neural networks and numerical modeling for predicting deformation modulus of rock masses. For this aim, firstly, the plate load test was simulated using a Finite Difference numerical model that was verified with actual results of the plate load test in Pirtaghi dam galleries in Iran. Secondly, an artificial neural network is trained with a set of data resulted from numerical simulations to estimate the deformation modulus of the rock mass. The results showed that an ANN with five neurons in the input layer, three hidden layers with 4, 3 and 2 neurons, and one neuron in the output layer had the best accuracy for predicting the deformation modulus of the rock mass.
EN
Purpose: The present study aims to apply soft computing techniques, Artificial Neural Network (ANN) and M5P model tree, to predict the ultimate bearing capacity of the H plan shaped skirted footing on the sand Design/methodology/approach: A total of 162 laboratory test data for the regular plan shaped (square, circular, rectangular, and strip (up to L/B = 2.5) skirted footing were collected from the literature to develop the soft computing-based models. These models were later modified for the H Plan shaped skirted footing with the introduction of the multiplication factor. The input variables chosen for the regular plan shaped footings were skirt depth to width of the footing ratio (Ds/B), friction angle of the sand (o), the ratio of the interface friction angle-to-friction angle of sand (5/o), and length-to-width (L/B) ratio of the footing. The output is the bearing capacity ratio (BCR, a ratio of the bearing capacity of the skirted footing to the bearing capacity of un-skirted footing). Findings: Sensitivity analysis was carried out to see the impact of the individual variable on the BCR). The sensitivity results reveal that the skirt depth to width of the footing ratio is the primary variable affecting the BCR. Finally, the performance of the developed soft computing models was assessed using six statistical parameters. The results from the statistical parameters reveal that model developed using ANN was performing superior to the one prepared using M5P model tree technique for the prediction of the ultimate bearing capacity of H plan shaped skirted footing on sand. Research limitations/implications: The model equations are developed with experimental laboratory data. Hence, these equations need further improvement by using field data. However, until now there no field data have been available to include in the present data set. Practical implications: These proposed model equations can be used to predict the bearing capacity of the H-shaped footing with the help of Ds/B, o, S/o and L/B without performing the laboratory experiments. Originality/value: There is no such model equation that was developed so far for the H-shaped skirted footings. Hence, an attempt was made in this article to predict the bearing capacity of the H-shaped footing by using available experimental data with the help of soft computing techniques.
EN
Changes in the compression strength of the PMMA bone cement with a variable powder/liquid component mix ratio were investigated. The strength test data served to develop basic mathematical models and an artificial neural network was employed for strength predictions. The empirical and numerical results were compared to determine modelling errors and assess the effectiveness of the proposed methods and models. The advantages and disadvantages of mathematical modelling are discussed.
PL
Opracowanie ma na celu przedstawienie możliwości zwiększenia wartości rynkowej produkcji elektrowni wodnych (EW) poprzez cenową optymalizację harmonogramów ich pracy na dobę następną. W referacie przedstawiono koncepcję prognozowania cen energii na Towarowej Giełdzie Energii (TGE) na podstawie określonych w Krajowym Systemie Elektroenergetycznym (KSE) warunków popytowo - podażowych. Zaprezentowano wyniki testowania oraz walidacji modeli prognostycznych, wykorzystujących metody sztucznej inteligencji, pod kątem poprawności prognozowania oraz odwzorowania dobowych profili cenowych. Wykazano, że poprzez zmianę dobowego harmonogramowania pracy EW istnieje możliwość zwiększenia wartości rynkowej produkcji EW w okresie średniorocznym o ok. 5-7 % w stosunku do wariantu aktualnego.
EN
The study aims at presenting the possibilities of hydropower plants (HPPs) market value production increase through a day ahead pricing schedule optimization. The change of HPPs planning system in Poland results from the new provisions introduced in national legislation, in particular from the validity of the renewable energy sources act. The approach presented in this paper is based on the change of current HPPs schedules by using energy price forecasts. The paper presents the concept of energy price forecasting at the Polish Power Exchange (PPE) based on the demand and supply conditions defined in the National Power System. The results of testing and validation forecast models using artificial intelligence methods were presented. The research was carried out to check correctness of forecasting systems and the mapping of daily price profiles in various conditions. It has been shown that it is possible to increase the HPPs production market value by changing the daily HPPs operation schedule by about 5-7% compared to the present case. The risk factors that may contribute to the reduction of the expected income were indicated. Potential areas for further growth in the production market value were presented.
PL
W referacie przedstawiono sposób prognozowania parametrów pogodowych takich jak temperatura, prędkość i kierunek wiatru oraz natężenie promieniowania słonecznego, które są podstawą do wyznaczania dynamicznej obciążalności linii napowietrznych. Do krótkoterminowej prognozy warunków pogodowych wykorzystano jedną z metod technik sieci neuronowych tj. dynamiczną nieliniową autoregresyjną sieć neuronową (NAR). Przykład obliczeniowy prognoz warunków pogodowych wykorzystuje rzeczywiste dane z kilku stacji pogodowych ze zbioru ponad 350 stacji mierzących dane pogodowe na terenie kraju. Przyjmując symetryczny bezwzględny błąd procentowy (SMAPE) oszacowano dokładność prognozy oraz porównano ją z pomiarami rzeczywistymi oraz z prognozą pozyskiwaną od podmiotu komercyjnego. Obliczenia i symulacje przeprowadzono w środowisku MATLAB, umożliwiając wykorzystanie opisanej metody prognozowania w istniejących systemach Dynamicznej Obciążalności Linii (DOL).
EN
The paper presents the method of forecasting weather parameters such as temperature, wind speed and direction, as well as the solar irradiation, which are the basis for determining the dynamic load capacity of overhead lines. For the short-term forecast of weather conditions one of the methods of neural network techniques was used, i.e. a dynamic non-linear autoregressive neural network (NAR). The calculation example of weather forecasts uses real data from several weather stations from a set of over 350 stations measuring weather data across the country. Assuming a symmetrical absolute percentage error (SMAPE), the accuracy of the forecast was estimated and compared with the actual measurements and the forecast obtained from the commercial entity. Calculations and simulations were carried out in the MATLAB environment, enabling the use of the described prediction method in the existing Dynamic Line Rating systems (DOL).
PL
W artykule opisany został problem analizy sceny na obrazach oraz sekwencjach video. Zadanie analizy sceny polega na detekcji, lokalizacji i klasyfikacji obiektów znajdujących się na obrazach. Zaimplementowany system wykorzystuje głęboką sieć neuronową, której struktura oparta została na architekturze YOLO (You Only Look Once). Niskie zapotrzebowania obliczeniowe wybranej architektury pozwala na wykonywanie detekcji w czasie rzeczywistym z zadowalającą dokładnością. W pracy przeprowadzono również badania nad doborem odpowiedniego optymalizatora wykorzystywanego w procesie uczenia. Jako przykładową aplikację wybrano analizę ruchu ulicznego w której skład wchodzi wykrywanie i lokalizacja obiektów takich jak m.in. samochody, motocykle czy sygnalizacja świetlna. Systemy tego typu mogą być wykorzystywane w wszelkiego typu systemach analizy wizyjnej otoczenia np. w pojazdach autonomicznych, systemach automatycznej analizy video z kamer przemysłowych, systemach dozoru czy analizy zdjęć satelitarnych.
EN
The paper describes the problem of scene analysis in images and video sequences. The task of scene analysis is to detect, locate and classify objects in images. As an example of an application, traffic analysis was chosen, which includes the detection and location of objects such as cars, motorcycles or traffic lights. The implemented system uses a deep neural network, whose structure is based on the YOLO (You Only Look Once) architecture. Low computing requirements of the chosen architecture allows performing real-time detection with satisfactory accuracy. The work also included a study on the selection of an appropriate optimizer used in the learning process. The program correctly detects objects with a large surface area, allowing the system to be used in traffic analysis. The work also showed that using the ADAM algorithm allowed significantly shorten the training time of the neural network. Systems of this type can be used in many types of video analysis systems such as autonomous vehicles, automatic video analysis systems with CCTV cameras, surveillance systems or satellite image analysis.
17
EN
The sliding strip of the current collector (pantograph) of a rail vehicle is an element directly cooperating with the catenary and is exposed to abrasion, electric discharge and various types of damage. It is therefore the most frequently replaced element. However, often sliding strips are exchanged before exceeding the limit thickness value, which increases the costs related to technical maintenance. Because the wear process is dependent on many factors, heuristic methods are necessary to predict the thickness of the sliding strip. Knowing the predicted thickness value, it will be possible to adapt the maintenance cycle. In the article, the results of simulations carried out based on the developed structure of the artificial neural network are also presented.
PL
Nakładka ślizgowa odbieraka prądu pojazdu szynowego jest elementem bezpośrednio współpracującym z siecią trakcyjną w związku, z czym narażona jest na zużycie ścierne, elektroerozyjne oraz różnego rodzaju uszkodzenia. Jest, zatem elementem najczęściej wymienianym. Często jednak nakładki wymieniane są przed przekroczeniem granicznej wartości grubości, co zwiększa koszty związane z obsługą techniczną. Ponieważ proces zużycia jest zależny od wielu czynników, dlatego do predykcji grubości nakładki ślizgowej niezbędne jest zastosowanie metod heurystycznych. Znając prognozowaną wartość grubości, możliwe będzie odpowiednie dostosowanie cyklu utrzymania. W artykule przedstawiono wyniki symulacji przeprowadzonych na podstawie opracowanej struktury sztucznej sieci neuronowej.
PL
Wstęp: W artykule przedstawiono koncepcję sterowania systemem produkcyjnym, pozwalającą na zachowanie jego stabilności, a tym samym na realizację założonych planów produkcyjnych. W tym celu zaproponowano połączenia modeli symulacyjnych i modeli sztucznych sieci neuronowych (SSN) systemu produkcyjnego. Połączenie obydwu typów modeli było możliwe dzięki opracowaniu hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji planu produkcji (celu) w zależności od wielkości ryzyka i poziomu stabilności analizowanego systemu produkcyjnego. Analizowany problem - możliwość realizacji planów produkcyjnych w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego - jest trudny do zamodelowania matematycznego. Jednak na podstawie analizy danych, pochodzących z modelu symulacyjnego i modelu ANN, można uzyskać informacje dotyczące zależności odpowiadających sobie wartości wejściowych i wyjściowych. Metody: Na podstawie przedstawionego sposobu zarządzania procesu produkcyjnego z wykorzystaniem modeli komputerowych, przeanalizowano możliwości zastosowania modeli symulacyjnych i modeli ANN w ocenie stabilności i ryzyka systemów produkcyjnych. Dokonano analizy i porównania obydwu typów modeli ze względu na sposób budowy oraz rodzaj danych wejściowych i wyjściowych. Wyniki: Na bezpośrednie połączenie modeli symulacyjnych i modeli SSN nie pozwala ich odmienna budowa, specyfika oraz inne rodzaje danych wejściowych i wyjściowych. Dlatego prezentowana w artykule koncepcja fuzji obydwu typów modeli odbywa się poprzez bazę wiedzy eksperckiej i wnioskowanie rozmyte. Wnioski: Na potrzeby sterowania systemem produkcyjnym, zaproponowano budowę hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji celu w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego.
EN
Background: Control plays the main role in ensuring the stability of production processes, while digital models of processes and methods of artificial intelligence are used more and more commonly in it. Production of highly diversified items in small lots at low inventory levels is characterised by a much lower stability as compared with largelot manufacturing. Additionally, innovations created for items or processes result in disturbances to current work. Although this turbulence is usually momentary, it may lead to a loss of function or manufacturing stability, which in turn translates into financial losses, as well as losing customers. This paper presents the potential of using simulation models and artificial neural network models to assess the stability of a reorganized production system. Methods: The problem analysed in the paper is that of merging a simulation model with an ANN model by designing a hybrid model. A direct connection of both types of models is not possible due to their various structures, specificity, and different purposes, as well as the various types of input and output data. Therefore, the idea of merging these two types of models through an expert knowledge base and fuzzy inference was proposed. The results from the simulation model and the ANN model were used to gather the knowledge on the production system being analysed. It has been proposed that the output from the simulation model provided knowledge of the risk level, while the output from the ANN model provided knowledge of process stability. Results: The paper presents the idea of projecting a hybrid model of the expert system in order to assess the stability of a reorganized production system. A model of a hybrid expert system was developed to assess the potential of executing the assumed production plans. The level of risk and the level of stability determined by the simulation model and the ANN model are entered into the system. The output from the expert model is the value of the variable determining the potential of achieving the goal. In the construction of the model, fuzzy inference was used, which uses linguistic variables and is characterized by a knowledge system in the form of fuzzy rules "if ... then ...". For both the independent variable and for the dependent variable, a set of membership functions representing accepted linguistic variables was proposed, and then decision rules were determined. The idea of merging simulation models with ANN models was tested on a practical example in production system that manufactures products for dishwashers. Conclusions: The potentiality to execute production plans depending on the level of risk and the level of stability of the production system is too complicated to be modelled mathematically, but based on the analysis of data from the simulation and ANN models, it is possible to obtain information concerning the relations between corresponding input and output values.
EN
AA7075 is an aluminum alloy which is almost as strong as steel, yet it weighs just one third as much. Unfortunately its use has been limited, due to the fact that pieces of it could not be securely welded together by the traditional welding process. Friction Stir Welding (FSW) process overcomes the limitations of conventional welding process. In our present work we have used Artificial Neural Network which is Artificial Intelligence based technique used for prediction purpose. The main objective of our present work is to compare the predicted results of the Ultimate Tensile Strength (UTS) of Friction Stir welded similar joints through Regression modeling and Artificial Neural Network (ANN) modeling. It was observed that the linear regression algorithm is able to make more accurate predictions compared to neural network algorithm for small dataset.
PL
Artykuł prezentuje opis podstaw biologicznych sieci neuronowych, ich modeli, funkcji aktywacji oraz metod uczenia stosowanych w wielu dziedzinach, w tym w sterowaniu układów napędowych. Odpowiednio dobrane i nauczone sieci neuronowe umożliwiają odtwarzanie niedostępnych pomiarowo zmiennych stanu układu napędowego dzięki ich identyfikacji na podstawie określonych sygnałów wejściowych i wyjściowych obiektu lub na podstawie neuromodelowania układu napędowego. Przedstawione w artykule rozważania poszerzono również o przykładowe zastosowania sztucznych sieci neuronowych w innych dziedzinach tj. prognozowaniu, analizie i klasyfikacji danych oraz filtrowaniu sygnałów pomiarowych.
EN
Described is the basic knowledge relating to biological neural networks, their models, activation function and learning methods applied in many areas including driving systems control. Properly selected and taught neural networks enable recovery of the inaccessbile by measurements variables of a driving system condition thanks to their identification on the basis of specified input and output object signals or on the basis of neuromodeling of a driving system. Presented here considerations were also extended by exemplary applications of artificial neural networks in some other areas like forecasting, analysis and classification of data as well as filtering of measurement signals.
first rewind previous Strona / 31 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.