Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  WLTP
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Kałuża śmierdzącego, żółtawego płynu sięgnęłaby nam do kostek, gdyby cały olej napędowy, który zużywamy w Polsce w ciągu roku, rozlał się na powierzchni kraju nad Wisłą. Spalając dwadzieścia miliardów litrów tej trucizny, uwolnimy z niej olbrzymią pożyteczną energię. Jednocześnie „wzbogacimy" atmosferę Ziemi o pięćdziesiąt milionów ton dwutlenku węgla (CO2), którego negatywny wpływ na klimat jest potwierdzony. Potrzeba naprawdę bardzo dużo drzew, które by trochę tego gazu zmagazynowały w trakcie fotosyntezy (jeden hektar lasu sosnowego może pochłonąć 20-30 ton CO2 rocznie). Do powietrza dostanie się również niezliczona ilość substancji szkodliwych dla wszystkich żywych istot.
EN
Air pollution in cities is an increasing problem. The increased concentration of toxic harmful substances, including PM10 and PM2.5, is noticeable in the autumn and spring period. This is when the heating period begins. However, the industrial sector is not always responsible for air pollution. Transport also has its share. The share of transport depends on the terrain and buildings. The lack of proper air flow causes emitted suspended dust and other particulates to remain above the city creating smog. In Poland, there are up to 40,000 deaths per year because of PM10 and PM2.5 emissions. The same problem applies to other European cities. Therefore, it is necessary to take specific measures to limit as much as possible the emission of toxic substances. In the case of activities in the transport sector, several solutions are possible. One of them is the use of vehicles with alternative power systems. In the short-term, it is reasonable to use hybrid alternative drives. In order to verify the advantages of using vehicles with hybrid systems, the authors of the article performed comparative tests on a chassis dynamometer. The objects of the study were two vehicles - one with a classic propulsion system and the other with a hybrid system in the current WLTC homologation cycle (WLTP procedure).
PL
Zanieczyszczenie powietrza w miastach stanowi coraz większy problem. Zwiększone stężenia toksycznych szkodliwych substancji, w tym PM10 i PM2.5, jest zauważalne jesienią i wiosną. Jest to początek okresu grzewczego. Jednak sektor przemysłowy nie zawsze jest odpowiedzialny za zanieczyszczenie powietrza. Transport ma również swój udział. Udział transportu zależy od terenu i budynków. Brak odpowiedniego przepływu powietrza powoduje emisję między innymi zawieszonego pyłu, który pozostaje nad miastem, tworząc smog. W Polsce umiera do 40 000 osób rocznie z powodu PM10 i PM2,5. Ten sam problem dotyczy innych miast europejskich. Dlatego konieczne jest podjęcie szczególnych środków w celu ograniczenia w jak największym stopniu emisji toksycznych substancji. W przypadku działań w sektorze transportu możliwe są różne rozwiązania. Jednym z nich jest wykorzystanie pojazdów z alternatywnymi systemami energetycznymi. W perspektywie krótkoterminowej rozsądne jest stosowanie hybrydowych alternatywnych napędów. Aby zweryfikować zalety stosowania pojazdów z układami hybrydowymi, autorzy artykułu przeprowadzili testy porównawcze na hamowni podwoziowej. Przedmiotem badań były dwa pojazdy - jeden z klasycznym układem napędowym, a drugi z układem hybrydowym, w aktualnym cyklu homologacji WLTC (procedura WLTP).
EN
The beginning of this article describes the NEDC and WLTC test cycles and basic differences between them. The following presents, the test stand and test objects, which were bioethanol fuels E10, E40 and E85. At the end were presented and discussed results of tests of these fuels in the flex-fuel vehicle in NEDC and WLTC test cycles.
EN
The latest legislation regarding the reduction of harmful exhaust emissions, greenhouse gases and fuel consumption determines not only maximum permissible emissions factors, but also emissions testing methods and laboratory design and additionally leads to the development of new research methods. BOSMAL has risen to meet these challenges by investing in an updated, state-of-the-art emissions testing laboratory, housed within a climate chamber and in parallel investing in a completely new laboratory designed with incoming and future legislative requirements in mind. This paper presents BOSMAL’s improved M1/N1 vehicular emissions and fuel consumption laboratory in a climatic chamber and BOSMAL’s standard chamber for the testing of vehicles in accordance with European Union, US and Japanese standards. The specifications, capabilities and design features of the sampling, analysis and development research possibilities and climate simulation systems are presented and discussed in relation to the increasing drive for cleaner, light duty road vehicles (including hybrids and electric vehicles). The recently-renovated laboratory with extended standard temperature range and the laboratory with climatic chamber are described in the context of the newest European Union legislation on the emission in the range of Euro 6d testing requirements. The laboratories permit BOSMAL’s engineers to compete in the international automotive arena in the development of new, more ecologically friendly and increasingly fuel efficient vehicles.
EN
Air pollution is a challenge for municipal authorities. Increased emission of PM10 and PM2.5 particles is particularly noticeable in Poland primarily the autumn and winter period. That is due to the start of the heating season. According to the above data, road transport accounted for approximately 5% of the creation of PM10 particles, ca. 7% of PM2.5 and approximately 32% for NOx. In Poland, suspended particles (PM10 and PM2.5) cause deaths of as many as 45,000 people a year. The issue of smog also affects other European cities. Therefore, it is necessary to undertake concrete efforts in order to reduce vehicle exhaust emissions as much as possible. It is therefore justifiable to reduce the emission of exhaust pollution, particularly NOx, PM, PN by conventional passenger cars powered by compression ignition engines. Emissions by these passenger cars have been reduced systematically. Comparative tests of the above emission of exhaust pollution were conducted on chassis dynamometer of such passenger car in NEDC cycle and in the new WLTC cycle in order to verify the level of emissions from this type of passenger car. Measurements of fuel consumption by that car were also taken. Emission of exhaust pollution and fuel consumption of the this car were also taken in the RDE road test.
6
Content available remote Gearshift strategy in the worldwide harmonized light vehicles test procedure
EN
The article discusses the method of determining gearshift sequence according to the WLTP (Worldwide harmonized Light vehicles Test Procedure) used for vehicles testing on a chassis dynamometer. The necessary input data is listed and a detailed calculation scheme is presented. As an example of the application of the discussed method, a gearshift sequence for a passenger car with a compression ignition engine was determined. The calculations were made for the vehicle speed course as in the WLTC (Worldwide harmonized Light vehicles Test Cycle) and, for comparison, as in the NEDC (New European Driving Cycle). The most important differences in the results obtained using both methods were indicated.
PL
W artykule omówiono metodę wyznaczania strategii zmiany biegów według światowej ujednoliconej procedury badań pojazdów lekkich WLTP (Worldwide harmonized Light vehicles Test Procedure), stosowaną do badań pojazdów na hamowni podwoziowej. Wyszczególniono niezbędne dane wejściowe i przedstawiono szczegółowy schemat obliczeń. Jako przykład zastosowania metody wyznaczono sekwencję zmiany biegów dla samochodu osobowego z silnikiem o zapłonie samoczynnym. Obliczenia wykonano dla przebiegu prędkości pojazdu w cyklu jezdnym WLTC (Worldwide harmonized Light vehicles Test Cycle) oraz, dla porównania, w cyklu jezdnym NEDC (New European Driving Cycle). Wskazano najważniejsze różnice w wynikach uzyskanych przy zastosowaniu obydwu metod.
PL
W pracy przedstawiono symulacje emisyjności cząstek stałych i całkowitej zawartości węglowodorów na przykładzie silnika o zapłonie samoczynnym 1.3 Multijet w samochodzie osobowym Fiat Panda. Analizie poddano wyniki pozyskanych zawartości masowych w odniesieniu do testów, paliw oraz aktywności układu start/stop w pojeździe. Próby zostały wykonane dla dwóch typów zasilania: olejem napędowym oraz estrami metylowymi kwasów tłuszczowych. Wykorzystując środowisko Scilab opracowano model symulacyjny, pozwalający na wykonanie ostatecznych testów: WLTP oraz NEDC. Zostały one przeprowadzone dla każdego z paliw z włączonym i włączonym układem start-stop. Efekty symulacji zostały przedstawione w formie wykresów wygenerowanych z programu Xcos.
EN
The emissivity simulations of solid and unburned particles on the example of 1.3 Multijet compression-ignition engine in the Fiat Panda passenger car were presented in the study. The results of the obtained mass contents were analysed in relation to tests, fuels and the activity of the start/stop system in the vehicle. The tests were carried out for two types of supply: diesel oil and fatty acid methyl esters. Using the Scilab programme, a simulation model was developed for the performance of the final tests: WLTP and NEDC. They were performed for each fuel with the enabled and disabled start-stop system. The results of the simulations were presented in the form of diagrams generated by the Xcos programme.
PL
Jednym z głównych, globalnych czynników, które wpływają na rozwój układów napędowych pojazdów samochodowych, są obecnie trendy w zmianach światowych norm i metodyk badawczych emisji spalin, spowodowane rzeczywistą emisją związków szkodliwych spalin z samochodów w czasie ich eksploatacji i metodami jej ograniczenia. Wprowadzenie nowych norm emisji w krajach Unii Europejskiej określanych jako Euro 6d, zawierających nowe metodyki badawcze WLTP i RDE, jest poważnym wyzwaniem dla przemysłu motoryzacyjnego, ze względu na trudności techniczne oraz czynniki polityczne i socjologiczne. Problem ograniczenia emisji gazów cieplarnianych, szczególnie dwutlenku węgla, emitowanych przez pojazdy drogowe, pozostaje również ważnym czynnikiem, ze względu na wpływ na globalne ocieplenie klimatu. Nowe normy emisji muszą być spełnione w szerokim zakresie warunków otoczenia i w rzeczywistej eksploatacji pojazdu na drodze. Ta problematyka i metody rozwoju układów napędowych pojazdów samochodowych były prezentowane i dyskutowane w czasie 6. Międzynarodowego Sympozjum Ograniczania Emisji z Pojazdów Samochodowych zorganizowanego przez Instytut BOSMAL w Bielsko-Białej. Podczas obrad dokonano syntezy obecnego i przyszłego statusu oraz rozwoju silników spalinowych, napędów hybrydowych i elektrycznych i tego, co najbliższe lata mogą przynieść w tej dziedzinie.
EN
Among the drivers influencing vehicular powertrain development, the field of vehicular exhaust emissions is experiencing wide-ranging and rapid changes. New emissions regulations such as Euro 6d and new test methods (RDE and WLTP) are the main challenges for the automotive industry caused by political, socioeconomic and technical factors. Air quality is very high on the political agenda and pressure remains to limit and reduce greenhouse gas emissions from the road transport sector. In addition to limits becoming increasingly stringent, the list of parameters subject to legal limits are slowly expanding and, most importantly, these limits must be met under a wide range of conditions. A range of strategies are available to overcome these difficulties, which was explored during the 6th International Exhaust Emissions Symposium (IEES) hosted at BOSMAL in June 2018. This paper reports and summarises the topics of the 6th IEES and attempts a synthesis on the current status of the field of IC engines, hybrid powertrains and electric vehicles and what the coming years may hold for the automotive and fuel industries and other allied fields.
EN
Among the drivers influencing vehicular powertrain development, the field of vehicular exhaust emissions is experiencing wideranging and rapid changes. New emissions regulations such as Euro 6d and new test methods (RDE and WLTP) are the main challenges for the automotive industry caused by political, socioeconomic and technical factors. Air quality is very high on the political agenda and pressure remains to limit and reduce greenhouse gas emissions from the road transport sector. In addition to limits becoming increasingly stringent, the list of parameters subject to legal limits are slowly expanding – and, most importantly, these limits must be met under a wide range of conditions. A range of strategies are available to overcome these difficulties, which was explored during the 6th International Exhaust Emissions Symposium (IEES) hosted at BOSMAL in June 2018. This paper reports and summarises the topics of the 6th IEES and attempts a synthesis on the current status of the field of IC engines, hybrid powertrains and electric vehicles and what the coming years may hold for the automotive and fuel industries and other allied fields.
EN
The field of vehicular exhaust emissions is experiencing wide-ranging and rapid changes. Air quality is very high on the political agenda and pressure remains to limit and reduce greenhouse gas emissions from the road transport sector. In addition to limits being increasingly stringent, the list of parameters subject to legal limits are slowly expanding – and, most importantly, these limits must be met under a wide wide range of conditions. A range of strategies are available to overcome these difficulties, which was explored during the 5th International Exhaust Emissions Symposium (IEES) hosted at BOSMAL in May 2016. This paper reports and summarises the topics of the 5th IEES and attempts a synthesis on the current status of the field and what the coming years may hold for the automotive and fuel industries and other allied fields.
EN
The major global automotive markets have all set limits for exhaust emissions from new road vehicles, which have become increasingly stringent over the past few decades. There is also considerable pressure to reduce fuel consumption and CO2 emissions – around 80% of all new passenger cars sold globally are subject to some kind of energy efficiency regulation. Such legal requirements necessitate extensive R&D and testing and the entire field is undergoing a period of rapid change. Despite a recent trend towards harmonisation, at present significant regional differences exist, which vary from the analytical laboratory methods specified, the list of regulated pollutants, the numerical values of the emissions limits and the test cycles employed for engine and chassis dynamometer testing of vehicles and their powertrains. Here the key points are reviewed and strategies and technologies employed to deal with these emissions challenges are discussed. Incoming automotive emissions regulations including the WLTP and Real Driving Emissions are discussed and in conclusion likely directions in powertrain technology are identified.
PL
W artykule przedstawiono tendencje zmian przepisów homologacyjnych w aspekcie emisji gazów wylotowych dla pojazdów kategorii PC i LDV. Przepisy te, są jednym z wyznaczników rozwoju układów napędowych współczesnych pojazdów samochodowych. Każda ich zmiana wiąże się ze zmianami konstrukcyjnymi silników spalinowych i ich osprzętu, a także rozbudową pozasilnikowych układów oczyszczania gazów wylotowych. Wprowadzenie normy Euro 6 dla pojazdów kategorii PC i LDV będzie wiązać się ze zmianami limitów związków szkodliwych i toksycznych oraz wdrożeniem nowych metod pomiarowych. W 2017 r. planowane jest zastąpienie obowiązującego testu jezdnego NEDC testami WLTC, które będą obowiązywały w Unii Europejskiej, Stanach Zjednoczonych i Japonii. Ma to na celu standaryzację procedur badawczych w wymiarze globalnym. Nowością w przepisach homologacyjnych będzie opracowanie i wdrożenie procedur RDE dotyczących pomiarów emisji zanieczyszczeń w warunkach rzeczywistej eksploatacji przy wykorzystaniu mobilnych przyrządów z grupy PEMS. Oprócz wprowadzenia normy Euro 6 zmodyfikowano również limity emisji drogowej CO2 z floty pojazdów danego producenta pojazdów samochodowych.
EN
The article presents trends approval regulations in terms of exhaust gas emissions for vehicles of category PC and LDV. These provisions are one of the indicators of the development of modern drive systems of motor vehicles. Any variation is associated with structural changes in internal combustion engines and their accessories, as well as the expansion of afterteatment systems. The introduction of the Euro 6 for category PC (Passenger Car) and LDV (Light Duty Vehicles) will involve changes to the limits of exhaust emission as well as the implementation of new measurement methods. In 2017. It is planned to replace the existing driving test NEDC (New European Driving Cycle) on WLTC (Worldwide Harmonized Light duty driving Test Cycle), which will apply in the European Union, the United States and Japan. The aim is to standardize testing procedures on a global scale. New to the type-approval legislation will be to develop and implement procedures RDE (Real Driving Emission) regarding the measurement of emissions in real operating conditions with the use of mobile devices from a group of PEMS (Portable Emission Measurement System). In addition to the introduction of the Euro 6 emission limits also modified road emission of CO2 from vehicle fleet a given manufacturer of motor vehicles.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.