Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Faktografia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper dynamic properties of low-alloy boron steels – Hardox 500, B27 and HTK 900H in delivered state (after hardening and tempering) are considered. Charpy V-notch (CVN) test results in connection with fractography in the ductile-to-brittle transition temperature region were analyzed.
Obtained from CVN test the impact transition curve, not always predicts properly a behavior of materials in conditions of dynamic loading. So an analyze of character of fracture helps to evaluate the real behavior of materials. Tested samples were cut out longitudinally in relation to cold work direction. The results of CVN test for selected steels, in temperatures: −40°C, −20°C, 0°C and +20°C are presented. Regarding ductile-to-brittle transition temperature, there is a significant difference taking into account values of Charpy V energy absorbed and a character of fracture.
Mniej
Więcej
PL
W artykule przeprowadzono rozważania na temat dynamicznych właściwości niskostopowych stali z borem – Hardox 500, B27 oraz HTK 900H w stanie dostarczenia (po hartowaniu i odpuszczaniu). Przeprowadzono próbę udarności Charpy’ego w zakresie temperaturowego przejścia plastyczno-kruchego w
powiązaniu z analizą fraktograficzną. Wyznaczona na podstawie wyników próby Charpy’ego udarnościowa krzywa przejścia, nie zawsze prawidłowo charakteryzuje zachowanie się materiału w warunkach obciążeń dynamicznych. Dlatego też fraktografia może uściślić rzeczywiste zachowanie się materiału. Próby przeprowadzono na próbkach wzdłużnych do kierunku przeróbki plastycznej w temperaturach: −40°C, −20°C, 0°C i +20°C. Stwierdzono występowanie znaczącej różnicy w określeniu temperatury przejścia w przypadku, gdy jest ona wyznaczona w oparciu o wynik próby udarności, a także gdy wyznaczono ją opierając się na charakterze przełomu.
Mniej
Więcej
PL
W artykule przedstawiono wyniki badań fraktograficznych i metalograficznych spiekanych stali Fe-Mn Cr-Mo-C wykonanych metodą metalurgii proszków. Proszkami wyjściowymi były stopowe proszki żelaza Astaloy CrL (1,5%Cr, 0,2%Mo) i Astaloy CrM (3%Cr, 0,5%Mo), proszek żelazomanganu niskowęglowego
(89%Mn, 1,18%C) i proszek grafitu C-UF. Z proszków wyjściowych, w mieszalniku Turbula przez 30 min, przygotowane zostały mieszanki proszków o następującym składzie chemicznym: Fe-3%Mn-1,5%Cr-0,2%Mo-0,7%C oraz Fe-3%Mn-3%Cr-0,5%Mo-0,7%C. Z przygotowanych mieszanek proszków, sprasowano kształtki prostopadłościenne o wymiarach 5 × 10 × 55 mm, oraz zgodne z PN EN ISO 2740, które następnie poddano spiekaniu w atmosferze będącej mieszaniną wodoru i azotu o składzie 5%H2-95%N2 lub w powietrzu. Spiekanie próbek odbywało się w półhermetycznej łódce w temperaturze 1120 oraz 1250 °C przez 60 min. Badania metalograficzne spiekanych stali przeprowadzono na zgładach wytrawionych 3 % nitalem. W wyniku badań metalograficznych stwierdzono obecność w stali, jako składników strukturalnych, austenitu, martenzytu oraz bainitu. Badania faktograficzne spiekanych stali zostały wykonane przy wykorzystaniu mikroskopu skaningowego JEOL JSM 700F wyposażonego w przystawkę EDS. Badania metalograficzne oraz analiza przełomów spiekanych stali zostały uzupełnione o analizę składu chemicznego spieków z wykorzystaniem analizatorów LECO CS-125 oraz LECO TS-336. Na podstawie otrzymanych wyników można stwierdzić, że aby otrzymać stal o takim składzie chemicznym, ale o lepszych własnościach, proces spiekania powinien być prowadzony w temperaturze wyższej niż 1250 °C, w celu zapobieżenia tworzeniu tlenków manganu. Jeśli mangan będzie łączył się z tlenem, wzrośnie twardość stali przy jednoczesnym obniżeniu własności plastycznych. Wiąże się to również z tym, że rozpuszczanie oraz rozmieszczenie cząstek żelazomanganu zależne jest od temperatury spiekania. Innym sposobem na zmniejszenie ilości przełomu kruchego w tej stali mogłoby być obniżenie zawartości manganu do poziomu 1 %. Z uwagi na wysoką prężność par manganu, pierwiastek ten ma wpływ na wielkość porów; w niższej temperaturze spiekania i przy niższej zawartości węgla w stali pojawiają się większe pory. Mikrostruktura spiekanych stali Fe-Mn-Cr-Mo-C zależna jest od zawartości węgla i temperatury spiekania. Przy niższej zawartości węgla w stali, jej przełom charakteryzuje się obecnością płytkich zagłębień. Obecność chromu w spiekanej stali również wpływa na charakter jej przełomu — obserwuje się wiele małych obszarów mających charakter przełomu kruchego.
Mniej
Więcej
EN
In this paper the results of fractographic and metallographic investigation of sintered Fe-Mn-Cr-Mo-C steels are presented. Pre-alloyed iron powders Astaloy CrL (1.5%Cr, 0.2%Mo) and Astaloy CrM (3%Cr, 0.5%Mo), ferromanganese powder (89%Mn, 1.18%C) and graphite powder C-UF has been used as the
basic powders. From those powders using Turbula mixer for 30 min, powder mixtures consist of Fe-3%Mn-1.5%Cr-0.2%Mo-0.7%C and Fe-3%Mn-3%Cr 0.5%Mo-0.7%C were prepared. From powders mixture two types of specimens were pressed: rectangular 5 × 10 × 55 mm, rupture test bars and ISO 2740 tensile test bars. Following pressing in the rigid dies, samples were sintered at 1120 or 1250 °C for 60 minutes in the air and in hydrogen-nitrogen mixture with 5:95 ratio. The metallographic investigations of PM steels were carried out on 3 % nital etched samples using light optical (LOM) and SEM microscopies, respectively. The fractographic investigations of sintered steels have been carried out using JEOL JSM 700F microscope equipped in EDX. Fractographic and metallographic research have been supported by chemical analyses using LECO CS-125 and LECO TS-336 analysers. From the investigations can be pointed out that to obtain better steel quality by using these chemical composition, sintering should be excused in higher temperature than 1250 °C. In that case manganese would not be connected with oxygen. If manganese connect with oxygen, hardness of steel increase, but plasticity decrease. This is due to fact, that distribution of FeMn compound depends on sintering temperature. The other way to minimalize the quantity of brittle fracture in sintered steel is to reduce the manganese concentration to 1 %. Presence of manganese has influence on the size of pores. After distribution of ferromanganese in lower temperatures and lower amount of carbon, bigger pores appears. Microstructure of sintered Fe-Mn-Cr-Mo-C steel is controlled by quantity of carbon and sintering temperature. Where was lower amount of carbon the shallow dimples were observed. Up to 0.8 % of carbon, material has better properties. When chromium is added to sintered steel the material has lots of small cleavages. This element also neutralized the negative influence of nitrogen on material strength.
Mniej
Więcej
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first rewind previous Strona / 1 next fast forward last